1 School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2 School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
To meet the requirements of high energy density and fast charge for energy storage systems and electric vehicles, the high-energy and high-power density lithium-ion batteries have attracted numerous attentions.Designing thick-electrode can significantly increase energy density and reduce cost, and is also compatible with various electrode materials, which makes it one of hottest researches for the development of high-energy density lithium-ion batteries.Thick electrodes usually suffer from poor mechanical properties and sluggish reaction kinetics. Therefore, it is very important to construct a thick electrode with good mechanical properties and fast transport network for lithium ion and electron.The electrochemical behavior and key scientific issues of thick electrodes were firstly analyzed in this review, the current strategies for constructing thick electrodes and their advantages were then introduced, and finally the design principles and the development direction of thick electrodes were pointed out.
ARMAND M , TARASCON J M . Building better batteries[J]. Nature, 2008, 451 (7179): 652- 657.
doi: 10.1038/451652a
2
SCHMUCH R , WAGNER R , HORPEL G , et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3 (4): 267- 278.
doi: 10.1038/s41560-018-0107-2
3
WANG L , CHEN B , MA J , et al. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density[J]. Chemical Society Reviews, 2018, 47 (17): 6505- 6602.
doi: 10.1039/C8CS00322J
4
KUANG Y , CHEN C , KIRSCH D , et al. Thick electrode batteries: principles, opportunities, and challenges[J]. Advanced Energy Materials, 2019, 9 (33): 1901457.
doi: 10.1002/aenm.201901457
5
CAO W , ZHANG J , LI H . Batteries with high theoretical energy densities[J]. Energy Storage Materials, 2020, 26, 46- 55.
doi: 10.1016/j.ensm.2019.12.024
6
BRUCE P G , FREUNBERGER S A , HARDWICK L J , et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11 (1): 19- 29.
7
SEH Z W , SUN Y , ZHANG Q , et al. Designing high-energy lithium-sulfur batteries[J]. Chem Soc Rev, 2016, 45 (20): 5605- 5634.
doi: 10.1039/C5CS00410A
8
LIU Q , SU X , LEI D , et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping[J]. Nature Energy, 2018, 3 (11): 936- 943.
doi: 10.1038/s41560-018-0180-6
9
ZHANG J N , LI Q , OUYANG C , et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4 (7): 594- 603.
doi: 10.1038/s41560-019-0409-z
10
YAN P , ZHENG J , CHEN T , et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode[J]. Nature Communications, 2018, 9, 2437.
doi: 10.1038/s41467-018-04862-w
YUAN S D , YANG C X , JIANG G D , et al. Research progress in nickel-rich ternary materials for lithium-ion batteries[J]. Journal of Materials Engineering, 2019, 47 (10): 1- 9.
ZHANG P P , HUANG H , HE Y P , et al. Recent development of Li-rich manganese cathode material for Li-ion batteries[J]. Journal of Materials Engineering, 2021, 49 (3): 48- 58.
13
LIU J , WANG J , NI Y , et al. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries[J]. Materials Today, 2021, 43, 132- 165.
doi: 10.1016/j.mattod.2020.10.028
YANG X L , ZHANG Z , CAO Y , et al. The structural engineering for achieving high energy density Li-ion batteries[J]. Energy Storage Science and Technology, 2020, 9 (4): 1127- 1136.
doi: 10.19799/j.cnki.2095-4239.2020-0147
15
ZHENG H , LI J , SONG X , et al. A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes[J]. Electrochimica Acta, 2012, 71, 258- 265.
doi: 10.1016/j.electacta.2012.03.161
16
DU Z , WOOD D L , DANIEL C , et al. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries[J]. Journal of Applied Electrochemistry, 2017, 47 (3): 405- 415.
doi: 10.1007/s10800-017-1047-4
17
BILLAUD J , BOUVILLE F , MAGRINI T , et al. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries[J]. Nature Energy, 2016, 1 (8): 17061.
18
YANG K , YANG L , WANG Z , et al. Constructing a highly efficient aligned conductive network to facilitate depolarized high-areal-capacity electrodes in Li-ion batteries[J]. Advanced Energy Materials, 2021, 11 (22): 2100601.
doi: 10.1002/aenm.202100601
19
ELANGO R , DEMORTIōRE A , ANDRADE V , et al. Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity[J]. Advanced Energy Materials, 2018, 8 (15): 1703031.
doi: 10.1002/aenm.201703031
20
JEONG H , LIM S J , CHAKRAVARTHY S , et al. Three-dimensional cathode with periodically aligned microchannels for improving volumetric energy density of lithium-ion batteries[J]. Journal of Power Sources, 2020, 451, 227764.
doi: 10.1016/j.jpowsour.2020.227764
21
PARK J , JEON C , KIM W , et al. Challenges, laser processing and electrochemical characteristics on application of ultra-thick electrode for high-energy lithium-ion battery[J]. Journal of Power Sources, 2021, 482, 228948.
doi: 10.1016/j.jpowsour.2020.228948
22
EGOROV V , GULZAR U , ZHANG Y , et al. Evolution of 3D printing methods and materials for electrochemical energy storage[J]. Advanced Materials, 2020, 32 (29): 2000556.
doi: 10.1002/adma.202000556
23
GAO X , YANG X , SUN Q , et al. Converting a thick electrode into vertically aligned "thin electrodes" by 3D-printing for designing thickness independent Li-S cathode[J]. Energy Storage Materials, 2020, 24, 682- 688.
doi: 10.1016/j.ensm.2019.08.001
24
LYU Z , LIM G J H , KOH J J , et al. Design and manufacture of 3D-printed batteries[J]. Joule, 2021, 5 (1): 89- 114.
doi: 10.1016/j.joule.2020.11.010
25
LI H , PENG L , WU D , et al. Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries[J]. Advanced Energy Materials, 2019, 9 (10): 1802930.
doi: 10.1002/aenm.201802930
26
SUN H T , MEI L , LIANG J F , et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage[J]. Science, 2017, 356 (6338): 599- 604.
doi: 10.1126/science.aam5852
27
CHEN C , ZHANG Y , LI Y , et al. Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors[J]. Advanced Energy Materials, 2017, 7 (17): 1700595.
doi: 10.1002/aenm.201700595
28
XIONG R , ZHANG Y , WANG Y , et al. Scalable manufacture of high-performance battery electrodes enabled by a template-free method[J]. Small Methods, 2021, 5 (6): 2100280.
doi: 10.1002/smtd.202100280
29
ZHANG X , JU Z , ZHU Y , et al. Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes[J]. Advanced Energy Materials, 2020, 11 (2): 2000808.
30
LI S P , XIONG R Y , HAN Z L , et al. Unveiling low-tortuous effect on electrochemical performance toward ultrathick LiFePO4 electrode with 100 mg·cm-2 area loading[J]. Journal of Power Sources, 2021, 515, 230588.
doi: 10.1016/j.jpowsour.2021.230588
31
OGIHARA N , ITOU Y , SASAKI T , et al. Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2015, 119 (9): 4612- 4619.
doi: 10.1021/jp512564f
32
CHUNG D W , EBNER M , ELY D R , et al. Validity of the Bruggeman relation for porous electrodes[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21 (7): 74009.
doi: 10.1088/0965-0393/21/7/074009
33
EBNER M , CHUNG D W , GARCÍA R E , et al. Tortuosity anisotropy in lithium-ion battery electrodes[J]. Advanced Energy Materials, 2014, 4 (5): 1301278.
doi: 10.1002/aenm.201301278
34
HOSSEINZADEH E , MARCO J , JENNINGS P . The impact of multi-layered porosity distribution on the performance of a lithium ion battery[J]. Applied Mathematical Modelling, 2018, 61, 107- 123.
doi: 10.1016/j.apm.2018.04.001
35
LANDESFEIND J , EBNER M , ELDIVEN A , et al. Tortuosity of battery electrodes: validation of impedance-derived values and critical comparison with 3D tomography[J]. Journal of the Electrochemical Society, 2018, 165 (3): 469- 476.
doi: 10.1149/2.0231803jes
36
KANG N , LIN Y , YANG L , et al. Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density[J]. Nature Communications, 2019, 10 (1): 4597.
doi: 10.1038/s41467-019-12542-6
37
PARK K Y , PARK J W , SEONG W M , et al. Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2020, 468, 228369.
doi: 10.1016/j.jpowsour.2020.228369
38
CHENG Q , WEI L , LIU Z , et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated raman scattering microscopy[J]. Nature Communications, 2018, 9, 2942.
doi: 10.1038/s41467-018-05289-z
39
LAGADEC M F , ZAHN R , MVLLER S , et al. Topological and network analysis of lithium ion battery components: the importance of pore space connectivity for cell operation[J]. Energy & Environmental Science, 2018, 11 (11): 3194- 3200.
40
LI S P , TIAN G L , XIONG R Y , et al. Enhanced homogeneity of electrochemical reaction via low tortuosity enabling high-voltage nickel-rich layered oxide thick-electrode[J]. Energy Storage Materials, 2022, 46, 443- 451.
doi: 10.1016/j.ensm.2022.01.035
41
CRAWFORD A J , CHOI D , BALDUCCI P J , et al. Lithium-ion battery physics and statistics-based state of health model[J]. Journal of Power Sources, 2021, 501, 148- 165.
42
DANNER T , SINGH M , HEIN S , et al. Thick electrodes for Li-ion batteries: a model based analysis[J]. Journal of Power Sources, 2016, 334, 191- 201.
doi: 10.1016/j.jpowsour.2016.09.143
43
SUN H , ZHU J , BAUMANN D , et al. Hierarchical 3D electrodes for electrochemical energy storage[J]. Nature Reviews Materials, 2019, 4 (1): 45- 60.
doi: 10.1038/s41578-018-0069-9
44
SHI B , SHANG Y , PEI Y , et al. Low tortuous, highly conductive, and high-areal-capacity battery electrodes enabled by through-thickness aligned carbon fiber framework[J]. Nano Letters, 2020, 20 (7): 5504- 5512.
doi: 10.1021/acs.nanolett.0c02053
45
WANG J , WANG M , REN N , et al. High-areal-capacity thick cathode with vertically-aligned micro-channels for advanced lithium ion batteries[J]. Energy Storage Materials, 2021, 39, 287- 293.
doi: 10.1016/j.ensm.2021.04.030
46
LIU Y , GOEBL J , YIN Y . Templated synthesis of nanostructured materials[J]. Chemical Society Reviews, 2013, 42 (7): 2610- 2653.
doi: 10.1039/C2CS35369E
47
LOU Z , WANG Y , YANG Y , et al. Carbon sphere template derived hollow nanostructure for photocatalysis and gas sensing[J]. Nanomaterials, 2020, 10 (2): 378.
doi: 10.3390/nano10020378
48
SANDER J S , ERB R M , LI L , et al. High-performance battery electrodes via magnetic templating[J]. Nature Energy, 2016, 1 (8): 16099.
doi: 10.1038/nenergy.2016.99
49
LI L , ERB R M , WANG J , et al. Fabrication of low-tortuosity ultrahigh-area-capacity battery electrodes through magnetic alignment of emulsion-based slurries[J]. Advanced Energy Materials, 2018, 9 (2): 1802472.
50
MA J , QIAO Y , HUANG M , et al. Low tortuosity thick cathode design in high loading lithium sulfur batteries enabled by magnetic hollow carbon fibers[J]. Applied Surface Science, 2021, 542, 148664.
doi: 10.1016/j.apsusc.2020.148664
51
HUANG C , DONTIGNY M , ZAGHIB K , et al. Low-tortuosity and graded lithium ion battery cathodes by ice templating[J]. Journal of Materials Chemistry A, 2019, 7 (37): 21421- 21431.
doi: 10.1039/C9TA07269A
52
HUANG C , GRANT P S . Coral-like directional porosity lithium ion battery cathodes by ice templating[J]. Journal of Materials Chemistry A, 2018, 6 (30): 14689- 14699.
doi: 10.1039/C8TA05049J
53
ZHANG X , JU Z , HOUSEL L M , et al. Promoting transport kinetics in Li-ion battery with aligned porous electrode architectures[J]. Nano Letters, 2019, 19 (11): 8255- 8261.
doi: 10.1021/acs.nanolett.9b03824
54
YU Y , ZHANG H , YANG X , et al. Vertically aligned laminate porous electrode: amaze the performance with a maze structure[J]. Energy Storage Materials, 2019, 19, 88- 93.
doi: 10.1016/j.ensm.2018.09.016
55
HAN Z L , LI S P , XIONG R Y , et al. Low tortuosity and reinforced concrete type ultra-thick electrode for practical lithium-sulfur batteries[J]. Advanced Functional Materials, 2021, 32 (12): 2108669.
56
ZHANG X , HUI Z , KING S , et al. Tunable porous electrode architectures for enhanced Li-ion storage kinetics in thick electrodes[J]. Nano Letters, 2021, 21 (13): 5896- 5904.
doi: 10.1021/acs.nanolett.1c02142
57
DENG W , SHI W , LIU Q , et al. Constructing gradient porous structure in thick Li4Ti5O12 electrode for high-energy and stable lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (46): 17062- 17068.
58
DUMONT-BOTTO E , BOURBON C , PATOUX S , et al. Synthesis by spark plasma sintering: a new way to obtain electrode materials for lithium ion batteries[J]. Journal of Power Sources, 2011, 196 (4): 2274- 2278.
doi: 10.1016/j.jpowsour.2010.09.037
HE G C . The present situation and development of laser processing technology[J]. Modern Manufacturing Technology and Equipment, 2020, 56 (10): 160- 161.
doi: 10.16107/j.cnki.mmte.2020.0972
61
PRÖLL J , KIM H , PIQUÉ A , et al. Laser-printing and femtosecond-laser structuring of LiMn2O4 composite cathodes for Li-ion microbatteries[J]. Journal of Power Sources, 2014, 255, 116- 124.
doi: 10.1016/j.jpowsour.2013.12.132
62
MANGANG M , SEIFERT H J , PFLEGING W . Influence of laser pulse duration on the electrochemical performance of laser structured LiFePO4 composite electrodes[J]. Journal of Power Sources, 2016, 304, 24- 32.
doi: 10.1016/j.jpowsour.2015.10.086
63
PARK J , HYEON S , JEONG S , et al. Performance enhancement of Li-ion battery by laser structuring of thick electrode with low porosity[J]. Journal of Industrial and Engineering Chemistry, 2019, 70, 178- 185.
doi: 10.1016/j.jiec.2018.10.012
64
SMYREK P , PRÖLL J , SEIFERT H J , et al. Laser-induced breakdown spectroscopy of laser-structured Li(NiMnCo)O2 electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 163 (2): 19- 26.
65
VELASCO-HOGAN A , XU J , MEYERS M A . Additive manufacturing as a method to design and optimize bioinspired structures[J]. Advanced Materials, 2018, 30 (52): 1800940.
doi: 10.1002/adma.201800940
66
WANG Y C , CHEN T , YEH Y L . Advanced 3D printing technologies for the aircraft industry: a fuzzy systematic approach for assessing the critical factors[J]. International Journal of Advanced Manufacturing Technology, 2019, 105 (10): 4059- 4069.
doi: 10.1007/s00170-018-1927-8
GAO K , WANG Z Z , KONG L W , et al. Process design of hollow centrifugal impeller based on additive-subtractive[J]. Aeronautical Manufacturing Technology, 2021, 64 (12): 72- 79.
doi: 10.16080/j.issn1671-833x.2021.12.072
68
SUN K , WEI T S , AHN B Y , et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Advanced Materials, 2013, 25 (33): 4539- 4543.
doi: 10.1002/adma.201301036
69
FU K , WANG Y , YAN C , et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Advanced Materials, 2016, 28 (13): 2587- 2594.
doi: 10.1002/adma.201505391
70
BAO P , LU Y , TAO P , et al. 3D printing PEDOT-CMC-based high areal capacity electrodes for Li-ion batteries[J]. Ionics, 2021, 27 (7): 2857- 2865.
doi: 10.1007/s11581-021-04063-4
71
SUN C , LIU S , SHI X , et al. 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery[J]. Chemical Engineering Journal, 2020, 381, 2857- 2865.
72
LANDI B J , GANTER M J , CRESS C D , et al. Carbon nanotubes for lithium ion batteries[J]. Energy & Environmental Science, 2009, 2 (6): 638- 654.
73
RACCICHINI R , VARZI A , PASSERINI S , et al. The role of graphene for electrochemical energy storage[J]. Nature Materials, 2015, 14 (3): 271- 279.
doi: 10.1038/nmat4170
74
EL-KADY M F , SHAO Y L , KANER R B . Graphene for batteries, supercapacitors and beyond[J]. Nature Reviews Materials, 2016, 1 (7): 16033.
doi: 10.1038/natrevmats.2016.33
WU Y F , CHONG S K , LIU Y N , et al. Research progress on carbon nano-materials to construct Li-ion and Li-S batteries of high performance[J]. Journal of Materials Engineering, 2020, 48 (4): 25- 35.
76
CHOI K H , CHO S J , CHUN S J , et al. Heterolayered, one-dimensional nanobuilding block mat batteries[J]. Nano Letters, 2014, 14 (10): 5677- 5686.
doi: 10.1021/nl5024029
77
KUANG Y , CHEN C , PASTEL G , et al. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices[J]. Advanced Energy Materials, 2018, 8 (33): 1802398.
doi: 10.1002/aenm.201802398
78
ZHU Y , FAN X , SUO L , et al. Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries[J]. ACS Nano, 2016, 10 (1): 1529- 1538.
doi: 10.1021/acsnano.5b07081
79
NOVOSELOV K S , GEIM A K , MOROZOV S V , et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666- 669.
doi: 10.1126/science.1102896
80
ZHANG Y , MALYI O I , TANG Y , et al. Reducing the charge carrier transport barrier in functionally layer-graded electrodes[J]. Angewandte Chemie International Edition, 2017, 56 (47): 14847- 14852.
doi: 10.1002/anie.201707883
81
ZENG T , LI Z , FENG D , et al. Confining nano FeSb2S4 in carbon nanotube/oxide graphene 3D porous networks for high-capacity sodium ion battery anode[J]. Journal of Alloys and Compounds, 2021, 884, 161116.
doi: 10.1016/j.jallcom.2021.161116
82
ZHU M , SONG J , LI T , et al. Highly anisotropic, highly transparent wood composites[J]. Advanced Materials, 2016, 28 (26): 5181.
doi: 10.1002/adma.201600427
83
LU L L , LU Y Y , XIAO Z J , et al. Wood-inspired high-performance ultrathick bulk battery electrodes[J]. Advanced Materials, 2018, 30 (20): 1706745.
doi: 10.1002/adma.201706745
84
WU X , XIA S , HUANG Y , et al. High-performance, low-cost, and dense-structure electrodes with high mass loading for lithium-ion batteries[J]. Advanced Functional Materials, 2019, 29 (34): 1903961.
doi: 10.1002/adfm.201903961