Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (10): 38-54    DOI: 10.11868/j.issn.1001-4381.2021.001086
  综述 本期目录 | 过刊浏览 | 高级检索 |
锂离子电池厚电极结构设计的研究进展
何仁杰1,2, 李书萍2, 王许敏1,2, 余创2, 程时杰2, 谢佳2,*()
1 华中科技大学 材料科学与工程学院, 武汉 430074
2 华中科技大学 电气与电子工程学院, 武汉 430074
Research progress of lithium-ion batteries thick-electrode architectural design
Renjie HE1,2, Shuping LI2, Xumin WANG1,2, Chuang YU2, Shijie CHENG2, Jia XIE2,*()
1 School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(26631 KB)   HTML ( 22 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为了满足储能系统和电动汽车市场对于高能量密度和快充的需求,兼具高能量和高功率密度的锂离子电池得到了广泛的关注。厚电极结构设计能够显著提高电池的能量密度并降低成本,且能与各种电极材料相兼容,是发展高能量密度锂离子电池的研究热点之一。厚电极通常面临着力学性能差和反应动力学慢等问题,因此构建力学性能良好和完善的锂离子及电子传输网络的厚电极至关重要。本文首先分析了厚电极的电化学特性和关键科学问题,然后梳理了目前构建厚电极的各种策略及其优势,最后探讨了厚电极的设计原则和发展方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何仁杰
李书萍
王许敏
余创
程时杰
谢佳
关键词 锂离子电池厚电极高能量密度高功率密度迂曲度    
Abstract

To meet the requirements of high energy density and fast charge for energy storage systems and electric vehicles, the high-energy and high-power density lithium-ion batteries have attracted numerous attentions.Designing thick-electrode can significantly increase energy density and reduce cost, and is also compatible with various electrode materials, which makes it one of hottest researches for the development of high-energy density lithium-ion batteries.Thick electrodes usually suffer from poor mechanical properties and sluggish reaction kinetics. Therefore, it is very important to construct a thick electrode with good mechanical properties and fast transport network for lithium ion and electron.The electrochemical behavior and key scientific issues of thick electrodes were firstly analyzed in this review, the current strategies for constructing thick electrodes and their advantages were then introduced, and finally the design principles and the development direction of thick electrodes were pointed out.

Key wordslithium ion battery    thick electrode    high-energy density    high-power density    tortuosity
收稿日期: 2021-11-08      出版日期: 2022-10-24
中图分类号:  TM910.3  
基金资助:国家自然科学基金项目(U1966214)
通讯作者: 谢佳     E-mail: xiejia@hust.edu.cn
作者简介: 谢佳(1981—), 男, 博士生导师, 博士, 研究方向包括动力电池及其关键材料、电池设计及电池工艺、能源存储与转换技术、面向电网的大规模电化学储能技术及新能源汽车技术等, 联系地址: 湖北省武汉市洪山区珞喻路1037号华中科技大学电气与电子工程学院(430074), E-mail: xiejia@hust.edu.cn
引用本文:   
何仁杰, 李书萍, 王许敏, 余创, 程时杰, 谢佳. 锂离子电池厚电极结构设计的研究进展[J]. 材料工程, 2022, 50(10): 38-54.
Renjie HE, Shuping LI, Xumin WANG, Chuang YU, Shijie CHENG, Jia XIE. Research progress of lithium-ion batteries thick-electrode architectural design. Journal of Materials Engineering, 2022, 50(10): 38-54.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001086      或      http://jme.biam.ac.cn/CN/Y2022/V50/I10/38
Fig.1  厚电极的科学挑战
(a)传统薄电极与厚电极的电池构型示意图[4];(b)厚电极的挑战[4];(c)厚电极多时间和空间尺度下的电化学科学问题[29];(d)多孔电极中各种内阻的示意图以及RionRct随着厚度的变化[29]
Fig.2  磁模板法厚电极的制备与性能
(a)超顺磁性氧化铁纳米颗粒附着的尼龙棒(上)、磁性液滴(下)作为牺牲相制备的低迂曲度厚电极[48];(b)磁性液滴作为牺牲相制备的310 μm厚电极倍率图[48];(c)Fe3O4磁性纳米颗粒辅助制备低迂曲度石墨电极[17];(d)低迂曲度石墨电极和普通石墨电极的倍率图[17]
Fig.3  冰模板法厚电极的制备与性能
(a)四种电极类型示意图[51];(b)不同工艺电极的倍率性能图[51];(c)基于冰模板法和传统电极的SEM图[18];(d)冰模板法和传统电极的倍率性能图[18]
Fig.4  盐模板法厚电极的制备与性能
(a)盐模板法制备电极的流程图[57];(b)不同含量NaCl的盐模板电极倍率图[57];(c)火花等离子烧结的盐模板自支撑电极制备流程的显微示意图[19];(d)厚电极LTO//LFP全电池循环曲线[19]
Preparation method Electrode material Areal mass loading/(mg· cm-2) Cycle performance/(mAh·cm-2) Rate performance/(mAh·cm-2) Reference
Magic-templating Graphite 9.1 0.91 (50th-1 C) [17]
Magic-templating LCO 100.5 13.60 (0.1 C) [49]
Ice-templating NCM811 50.0 8.19 (50th-0.1 C) 8.84 (0.1 C) [18]
Ice-templating LCO 98.5 14.00 (0.1 C) [52]
Salt-templating LFP 150.0 20.37 (20th-0.05 C) 21.00 (0.05 C) [19]
Salt-templating LTO 12.0 1.80 (200th-1 C) 1.20 (5 C) [57]
Table 1  模板法厚电极电池的性能总结
Fig.5  激光刻蚀厚电极的形貌与性能
(a)激光刻蚀的格子型电极显微形貌[61];(b)传统电极与平行沟壑状激光结构显微示意图[63];(c)不同结构电极的倍率图[61];(d)高孔隙率下各种厚度电极的倍率图[63]
Fig.6  3D打印厚电极的制备与性能
(a)叉指式3D结构制备示意图[68];(b)8层电极全电池不同倍率的放电曲线图[68];(c)rGO-AgNWs-LTO 3D结构制备流程图[72];(d)rGO-AgNWs-LTO和rGO-LTO倍率循环图[72]
Fig.7  一维材料构建的三维集流体厚电极
(a)SEA制备流程图[76];(b)h-nanonat电极与传统电极的倍率图[76];(c)纳米纸电极制备流程图[77];(d)纳米纸电极与传统电极倍率性能图[77]
Fig.8  二维材料构建的三维集流体厚电极
(a)HGF/Nb2O5复合电极制备流程图[26];(b)不同刻蚀时间的HGF/Nb2O5电极倍率性能图[26];(c)不同HGF/Nb2O5电极刻蚀时间的充放电曲线[26];(d)不同梯度的RGO/TiO2(B)功能层级电极图[80];(e)up-graded电极(蓝色)、homogeneous电极(红色)和down-graded电极(绿色)的倍率性能[80]
Fig.9  天然木材电极的制备与性能
(a)LFP-CF及传统电极显微结构示意图[27];(b)不同电流密度下的面积容量曲线[27];(c)LCO-CF显微示意图[84];(d)LCO-CF截面SEM图[83];(e)LCO-CF电极的锂离子传输模型图[83];(f)不同电极的倍率图[83]
Carbon material Electrode material Areal mass loading/(mg·cm-2) Cycle performance/(mAh·cm-2) Rate performance/(mAh·cm-2) Reference
1D (CF) LFP 18.00 1.95 (315th-2 C) 1.71 (3 C) [25]
1D (CNF) LFP 20.00 2.42 (150th-2 mA·cm-2) 1.80 (5 mA·cm-2) [78]
2D (GO) Nb2O5 11.00 0.83 (100 C) [26]
2D (RGO) FeSb2S4 7.94 1.18 (200th-1A·g-1) 3.11 (1A·g-1) [81]
3D (wood) LFP 60.00 3.80 (140th-2 mA·cm-2) 7.60 (0.5 mA·cm-2) [27]
3D (wood) LCO 206.00 24.50 (0.05 C) [84]
Table 2  自支撑结构厚电极电池的性能总结
Fig.10  发泡剂电极的制备与性能[28]
(a)发泡剂制备的电极流程图;(b)发泡剂电极表面显微结构示意图;(c),(d)未辊压的和辊压过的发泡电极截面显微结构示意图;(e)传统电极与发泡剂电极的倍率比较;(f)30 mg·cm-2载量下的不同电极结构的倍率比较;(g)放电深度为20%的辊压电极过电位图
1 ARMAND M , TARASCON J M . Building better batteries[J]. Nature, 2008, 451 (7179): 652- 657.
doi: 10.1038/451652a
2 SCHMUCH R , WAGNER R , HORPEL G , et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3 (4): 267- 278.
doi: 10.1038/s41560-018-0107-2
3 WANG L , CHEN B , MA J , et al. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density[J]. Chemical Society Reviews, 2018, 47 (17): 6505- 6602.
doi: 10.1039/C8CS00322J
4 KUANG Y , CHEN C , KIRSCH D , et al. Thick electrode batteries: principles, opportunities, and challenges[J]. Advanced Energy Materials, 2019, 9 (33): 1901457.
doi: 10.1002/aenm.201901457
5 CAO W , ZHANG J , LI H . Batteries with high theoretical energy densities[J]. Energy Storage Materials, 2020, 26, 46- 55.
doi: 10.1016/j.ensm.2019.12.024
6 BRUCE P G , FREUNBERGER S A , HARDWICK L J , et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11 (1): 19- 29.
7 SEH Z W , SUN Y , ZHANG Q , et al. Designing high-energy lithium-sulfur batteries[J]. Chem Soc Rev, 2016, 45 (20): 5605- 5634.
doi: 10.1039/C5CS00410A
8 LIU Q , SU X , LEI D , et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping[J]. Nature Energy, 2018, 3 (11): 936- 943.
doi: 10.1038/s41560-018-0180-6
9 ZHANG J N , LI Q , OUYANG C , et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4 (7): 594- 603.
doi: 10.1038/s41560-019-0409-z
10 YAN P , ZHENG J , CHEN T , et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode[J]. Nature Communications, 2018, 9, 2437.
doi: 10.1038/s41467-018-04862-w
11 袁颂东, 杨灿星, 江国栋, 等. 锂离子电池高镍三元材料的研究进展[J]. 材料工程, 2019, 47 (10): 1- 9.
11 YUAN S D , YANG C X , JIANG G D , et al. Research progress in nickel-rich ternary materials for lithium-ion batteries[J]. Journal of Materials Engineering, 2019, 47 (10): 1- 9.
12 张盼盼, 黄惠, 何亚鹏, 等. 锂离子电池富锂锰正极材料的最新进展[J]. 材料工程, 2021, 49 (3): 48- 58.
12 ZHANG P P , HUANG H , HE Y P , et al. Recent development of Li-rich manganese cathode material for Li-ion batteries[J]. Journal of Materials Engineering, 2021, 49 (3): 48- 58.
13 LIU J , WANG J , NI Y , et al. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries[J]. Materials Today, 2021, 43, 132- 165.
doi: 10.1016/j.mattod.2020.10.028
14 杨续来, 张峥, 曹勇, 等. 高能量密度锂离子电池结构工程化技术探讨[J]. 储能科学与技术, 2020, 9 (4): 1127- 1136.
doi: 10.19799/j.cnki.2095-4239.2020-0147
14 YANG X L , ZHANG Z , CAO Y , et al. The structural engineering for achieving high energy density Li-ion batteries[J]. Energy Storage Science and Technology, 2020, 9 (4): 1127- 1136.
doi: 10.19799/j.cnki.2095-4239.2020-0147
15 ZHENG H , LI J , SONG X , et al. A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes[J]. Electrochimica Acta, 2012, 71, 258- 265.
doi: 10.1016/j.electacta.2012.03.161
16 DU Z , WOOD D L , DANIEL C , et al. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries[J]. Journal of Applied Electrochemistry, 2017, 47 (3): 405- 415.
doi: 10.1007/s10800-017-1047-4
17 BILLAUD J , BOUVILLE F , MAGRINI T , et al. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries[J]. Nature Energy, 2016, 1 (8): 17061.
18 YANG K , YANG L , WANG Z , et al. Constructing a highly efficient aligned conductive network to facilitate depolarized high-areal-capacity electrodes in Li-ion batteries[J]. Advanced Energy Materials, 2021, 11 (22): 2100601.
doi: 10.1002/aenm.202100601
19 ELANGO R , DEMORTIōRE A , ANDRADE V , et al. Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity[J]. Advanced Energy Materials, 2018, 8 (15): 1703031.
doi: 10.1002/aenm.201703031
20 JEONG H , LIM S J , CHAKRAVARTHY S , et al. Three-dimensional cathode with periodically aligned microchannels for improving volumetric energy density of lithium-ion batteries[J]. Journal of Power Sources, 2020, 451, 227764.
doi: 10.1016/j.jpowsour.2020.227764
21 PARK J , JEON C , KIM W , et al. Challenges, laser processing and electrochemical characteristics on application of ultra-thick electrode for high-energy lithium-ion battery[J]. Journal of Power Sources, 2021, 482, 228948.
doi: 10.1016/j.jpowsour.2020.228948
22 EGOROV V , GULZAR U , ZHANG Y , et al. Evolution of 3D printing methods and materials for electrochemical energy storage[J]. Advanced Materials, 2020, 32 (29): 2000556.
doi: 10.1002/adma.202000556
23 GAO X , YANG X , SUN Q , et al. Converting a thick electrode into vertically aligned "thin electrodes" by 3D-printing for designing thickness independent Li-S cathode[J]. Energy Storage Materials, 2020, 24, 682- 688.
doi: 10.1016/j.ensm.2019.08.001
24 LYU Z , LIM G J H , KOH J J , et al. Design and manufacture of 3D-printed batteries[J]. Joule, 2021, 5 (1): 89- 114.
doi: 10.1016/j.joule.2020.11.010
25 LI H , PENG L , WU D , et al. Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries[J]. Advanced Energy Materials, 2019, 9 (10): 1802930.
doi: 10.1002/aenm.201802930
26 SUN H T , MEI L , LIANG J F , et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage[J]. Science, 2017, 356 (6338): 599- 604.
doi: 10.1126/science.aam5852
27 CHEN C , ZHANG Y , LI Y , et al. Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors[J]. Advanced Energy Materials, 2017, 7 (17): 1700595.
doi: 10.1002/aenm.201700595
28 XIONG R , ZHANG Y , WANG Y , et al. Scalable manufacture of high-performance battery electrodes enabled by a template-free method[J]. Small Methods, 2021, 5 (6): 2100280.
doi: 10.1002/smtd.202100280
29 ZHANG X , JU Z , ZHU Y , et al. Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes[J]. Advanced Energy Materials, 2020, 11 (2): 2000808.
30 LI S P , XIONG R Y , HAN Z L , et al. Unveiling low-tortuous effect on electrochemical performance toward ultrathick LiFePO4 electrode with 100 mg·cm-2 area loading[J]. Journal of Power Sources, 2021, 515, 230588.
doi: 10.1016/j.jpowsour.2021.230588
31 OGIHARA N , ITOU Y , SASAKI T , et al. Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2015, 119 (9): 4612- 4619.
doi: 10.1021/jp512564f
32 CHUNG D W , EBNER M , ELY D R , et al. Validity of the Bruggeman relation for porous electrodes[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21 (7): 74009.
doi: 10.1088/0965-0393/21/7/074009
33 EBNER M , CHUNG D W , GARCÍA R E , et al. Tortuosity anisotropy in lithium-ion battery electrodes[J]. Advanced Energy Materials, 2014, 4 (5): 1301278.
doi: 10.1002/aenm.201301278
34 HOSSEINZADEH E , MARCO J , JENNINGS P . The impact of multi-layered porosity distribution on the performance of a lithium ion battery[J]. Applied Mathematical Modelling, 2018, 61, 107- 123.
doi: 10.1016/j.apm.2018.04.001
35 LANDESFEIND J , EBNER M , ELDIVEN A , et al. Tortuosity of battery electrodes: validation of impedance-derived values and critical comparison with 3D tomography[J]. Journal of the Electrochemical Society, 2018, 165 (3): 469- 476.
doi: 10.1149/2.0231803jes
36 KANG N , LIN Y , YANG L , et al. Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density[J]. Nature Communications, 2019, 10 (1): 4597.
doi: 10.1038/s41467-019-12542-6
37 PARK K Y , PARK J W , SEONG W M , et al. Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2020, 468, 228369.
doi: 10.1016/j.jpowsour.2020.228369
38 CHENG Q , WEI L , LIU Z , et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated raman scattering microscopy[J]. Nature Communications, 2018, 9, 2942.
doi: 10.1038/s41467-018-05289-z
39 LAGADEC M F , ZAHN R , MVLLER S , et al. Topological and network analysis of lithium ion battery components: the importance of pore space connectivity for cell operation[J]. Energy & Environmental Science, 2018, 11 (11): 3194- 3200.
40 LI S P , TIAN G L , XIONG R Y , et al. Enhanced homogeneity of electrochemical reaction via low tortuosity enabling high-voltage nickel-rich layered oxide thick-electrode[J]. Energy Storage Materials, 2022, 46, 443- 451.
doi: 10.1016/j.ensm.2022.01.035
41 CRAWFORD A J , CHOI D , BALDUCCI P J , et al. Lithium-ion battery physics and statistics-based state of health model[J]. Journal of Power Sources, 2021, 501, 148- 165.
42 DANNER T , SINGH M , HEIN S , et al. Thick electrodes for Li-ion batteries: a model based analysis[J]. Journal of Power Sources, 2016, 334, 191- 201.
doi: 10.1016/j.jpowsour.2016.09.143
43 SUN H , ZHU J , BAUMANN D , et al. Hierarchical 3D electrodes for electrochemical energy storage[J]. Nature Reviews Materials, 2019, 4 (1): 45- 60.
doi: 10.1038/s41578-018-0069-9
44 SHI B , SHANG Y , PEI Y , et al. Low tortuous, highly conductive, and high-areal-capacity battery electrodes enabled by through-thickness aligned carbon fiber framework[J]. Nano Letters, 2020, 20 (7): 5504- 5512.
doi: 10.1021/acs.nanolett.0c02053
45 WANG J , WANG M , REN N , et al. High-areal-capacity thick cathode with vertically-aligned micro-channels for advanced lithium ion batteries[J]. Energy Storage Materials, 2021, 39, 287- 293.
doi: 10.1016/j.ensm.2021.04.030
46 LIU Y , GOEBL J , YIN Y . Templated synthesis of nanostructured materials[J]. Chemical Society Reviews, 2013, 42 (7): 2610- 2653.
doi: 10.1039/C2CS35369E
47 LOU Z , WANG Y , YANG Y , et al. Carbon sphere template derived hollow nanostructure for photocatalysis and gas sensing[J]. Nanomaterials, 2020, 10 (2): 378.
doi: 10.3390/nano10020378
48 SANDER J S , ERB R M , LI L , et al. High-performance battery electrodes via magnetic templating[J]. Nature Energy, 2016, 1 (8): 16099.
doi: 10.1038/nenergy.2016.99
49 LI L , ERB R M , WANG J , et al. Fabrication of low-tortuosity ultrahigh-area-capacity battery electrodes through magnetic alignment of emulsion-based slurries[J]. Advanced Energy Materials, 2018, 9 (2): 1802472.
50 MA J , QIAO Y , HUANG M , et al. Low tortuosity thick cathode design in high loading lithium sulfur batteries enabled by magnetic hollow carbon fibers[J]. Applied Surface Science, 2021, 542, 148664.
doi: 10.1016/j.apsusc.2020.148664
51 HUANG C , DONTIGNY M , ZAGHIB K , et al. Low-tortuosity and graded lithium ion battery cathodes by ice templating[J]. Journal of Materials Chemistry A, 2019, 7 (37): 21421- 21431.
doi: 10.1039/C9TA07269A
52 HUANG C , GRANT P S . Coral-like directional porosity lithium ion battery cathodes by ice templating[J]. Journal of Materials Chemistry A, 2018, 6 (30): 14689- 14699.
doi: 10.1039/C8TA05049J
53 ZHANG X , JU Z , HOUSEL L M , et al. Promoting transport kinetics in Li-ion battery with aligned porous electrode architectures[J]. Nano Letters, 2019, 19 (11): 8255- 8261.
doi: 10.1021/acs.nanolett.9b03824
54 YU Y , ZHANG H , YANG X , et al. Vertically aligned laminate porous electrode: amaze the performance with a maze structure[J]. Energy Storage Materials, 2019, 19, 88- 93.
doi: 10.1016/j.ensm.2018.09.016
55 HAN Z L , LI S P , XIONG R Y , et al. Low tortuosity and reinforced concrete type ultra-thick electrode for practical lithium-sulfur batteries[J]. Advanced Functional Materials, 2021, 32 (12): 2108669.
56 ZHANG X , HUI Z , KING S , et al. Tunable porous electrode architectures for enhanced Li-ion storage kinetics in thick electrodes[J]. Nano Letters, 2021, 21 (13): 5896- 5904.
doi: 10.1021/acs.nanolett.1c02142
57 DENG W , SHI W , LIU Q , et al. Constructing gradient porous structure in thick Li4Ti5O12 electrode for high-energy and stable lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (46): 17062- 17068.
58 DUMONT-BOTTO E , BOURBON C , PATOUX S , et al. Synthesis by spark plasma sintering: a new way to obtain electrode materials for lithium ion batteries[J]. Journal of Power Sources, 2011, 196 (4): 2274- 2278.
doi: 10.1016/j.jpowsour.2010.09.037
59 顾波. 激光加工技术及产业的现状与应用发展趋势[J]. 金属加工(热加工), 2020, (10): 37- 42.
60 何广川. 浅谈激光加工技术的现状及发展[J]. 现代制造技术与装备, 2020, 56 (10): 160- 161.
doi: 10.16107/j.cnki.mmte.2020.0972
60 HE G C . The present situation and development of laser processing technology[J]. Modern Manufacturing Technology and Equipment, 2020, 56 (10): 160- 161.
doi: 10.16107/j.cnki.mmte.2020.0972
61 PRÖLL J , KIM H , PIQUÉ A , et al. Laser-printing and femtosecond-laser structuring of LiMn2O4 composite cathodes for Li-ion microbatteries[J]. Journal of Power Sources, 2014, 255, 116- 124.
doi: 10.1016/j.jpowsour.2013.12.132
62 MANGANG M , SEIFERT H J , PFLEGING W . Influence of laser pulse duration on the electrochemical performance of laser structured LiFePO4 composite electrodes[J]. Journal of Power Sources, 2016, 304, 24- 32.
doi: 10.1016/j.jpowsour.2015.10.086
63 PARK J , HYEON S , JEONG S , et al. Performance enhancement of Li-ion battery by laser structuring of thick electrode with low porosity[J]. Journal of Industrial and Engineering Chemistry, 2019, 70, 178- 185.
doi: 10.1016/j.jiec.2018.10.012
64 SMYREK P , PRÖLL J , SEIFERT H J , et al. Laser-induced breakdown spectroscopy of laser-structured Li(NiMnCo)O2 electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 163 (2): 19- 26.
65 VELASCO-HOGAN A , XU J , MEYERS M A . Additive manufacturing as a method to design and optimize bioinspired structures[J]. Advanced Materials, 2018, 30 (52): 1800940.
doi: 10.1002/adma.201800940
66 WANG Y C , CHEN T , YEH Y L . Advanced 3D printing technologies for the aircraft industry: a fuzzy systematic approach for assessing the critical factors[J]. International Journal of Advanced Manufacturing Technology, 2019, 105 (10): 4059- 4069.
doi: 10.1007/s00170-018-1927-8
67 高凯, 王振忠, 孔刘伟, 等. 基于增减材复合制造的中空离心叶轮工艺设计[J]. 航空制造技术, 2021, 64 (12): 72- 79.
doi: 10.16080/j.issn1671-833x.2021.12.072
67 GAO K , WANG Z Z , KONG L W , et al. Process design of hollow centrifugal impeller based on additive-subtractive[J]. Aeronautical Manufacturing Technology, 2021, 64 (12): 72- 79.
doi: 10.16080/j.issn1671-833x.2021.12.072
68 SUN K , WEI T S , AHN B Y , et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Advanced Materials, 2013, 25 (33): 4539- 4543.
doi: 10.1002/adma.201301036
69 FU K , WANG Y , YAN C , et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Advanced Materials, 2016, 28 (13): 2587- 2594.
doi: 10.1002/adma.201505391
70 BAO P , LU Y , TAO P , et al. 3D printing PEDOT-CMC-based high areal capacity electrodes for Li-ion batteries[J]. Ionics, 2021, 27 (7): 2857- 2865.
doi: 10.1007/s11581-021-04063-4
71 SUN C , LIU S , SHI X , et al. 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery[J]. Chemical Engineering Journal, 2020, 381, 2857- 2865.
72 LANDI B J , GANTER M J , CRESS C D , et al. Carbon nanotubes for lithium ion batteries[J]. Energy & Environmental Science, 2009, 2 (6): 638- 654.
73 RACCICHINI R , VARZI A , PASSERINI S , et al. The role of graphene for electrochemical energy storage[J]. Nature Materials, 2015, 14 (3): 271- 279.
doi: 10.1038/nmat4170
74 EL-KADY M F , SHAO Y L , KANER R B . Graphene for batteries, supercapacitors and beyond[J]. Nature Reviews Materials, 2016, 1 (7): 16033.
doi: 10.1038/natrevmats.2016.33
75 吴怡芳, 崇少坤, 柳永宁, 等. 碳纳米材料构建高性能锂离子和锂硫电池研究进展[J]. 材料工程, 2020, 48 (4): 25- 35.
75 WU Y F , CHONG S K , LIU Y N , et al. Research progress on carbon nano-materials to construct Li-ion and Li-S batteries of high performance[J]. Journal of Materials Engineering, 2020, 48 (4): 25- 35.
76 CHOI K H , CHO S J , CHUN S J , et al. Heterolayered, one-dimensional nanobuilding block mat batteries[J]. Nano Letters, 2014, 14 (10): 5677- 5686.
doi: 10.1021/nl5024029
77 KUANG Y , CHEN C , PASTEL G , et al. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices[J]. Advanced Energy Materials, 2018, 8 (33): 1802398.
doi: 10.1002/aenm.201802398
78 ZHU Y , FAN X , SUO L , et al. Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries[J]. ACS Nano, 2016, 10 (1): 1529- 1538.
doi: 10.1021/acsnano.5b07081
79 NOVOSELOV K S , GEIM A K , MOROZOV S V , et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666- 669.
doi: 10.1126/science.1102896
80 ZHANG Y , MALYI O I , TANG Y , et al. Reducing the charge carrier transport barrier in functionally layer-graded electrodes[J]. Angewandte Chemie International Edition, 2017, 56 (47): 14847- 14852.
doi: 10.1002/anie.201707883
81 ZENG T , LI Z , FENG D , et al. Confining nano FeSb2S4 in carbon nanotube/oxide graphene 3D porous networks for high-capacity sodium ion battery anode[J]. Journal of Alloys and Compounds, 2021, 884, 161116.
doi: 10.1016/j.jallcom.2021.161116
82 ZHU M , SONG J , LI T , et al. Highly anisotropic, highly transparent wood composites[J]. Advanced Materials, 2016, 28 (26): 5181.
doi: 10.1002/adma.201600427
83 LU L L , LU Y Y , XIAO Z J , et al. Wood-inspired high-performance ultrathick bulk battery electrodes[J]. Advanced Materials, 2018, 30 (20): 1706745.
doi: 10.1002/adma.201706745
84 WU X , XIA S , HUANG Y , et al. High-performance, low-cost, and dense-structure electrodes with high mass loading for lithium-ion batteries[J]. Advanced Functional Materials, 2019, 29 (34): 1903961.
doi: 10.1002/adfm.201903961
[1] 韩富娟, 常增花, 赵金玲, 王仁念, 丁海洋, 卢世刚. 高镍三元锂离子电池低温放电性能研究进展[J]. 材料工程, 2022, 50(9): 1-17.
[2] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[3] 汪晨阳, 张安邦, 常增花, 吴帅锦, 刘智, 庞静. 锂离子电池用多孔电极结构设计及制备技术进展[J]. 材料工程, 2022, 50(1): 67-79.
[4] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[5] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[6] 欧阳丽霞, 武兆辉, 王建涛. 锂离子电池浆料的制备技术及其影响因素[J]. 材料工程, 2021, 49(7): 21-34.
[7] 张健华, 张伟, 余章龙, 史碧梦, 杨娟玉. 锂离子电池用三维网状水系黏结剂的研究进展[J]. 材料工程, 2021, 49(6): 44-54.
[8] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[9] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[10] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[11] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[12] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[13] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[14] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[15] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn