Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (11): 92-100    DOI: 10.11868/j.issn.1001-4381.2021.001196
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高温多向异步轧制对LZ91镁锂合金组织和力学性能的影响
王格格1, 李晓燕1, 郭非1,2,*(), 张紫璇1, 陈翠玉1, 朱召渲1, 胡怡1
1 重庆理工大学 材料科学与工程学院, 重庆 400054
2 重庆材料研究院, 重庆 400799
Effect of high temperature multidirectional asynchronous rolling on microstructure and mechanical properties of LZ91 magnesium-lithium alloy
Gege WANG1, Xiaoyan LI1, Fei GUO1,2,*(), Zixuan ZHANG1, Cuiyu CHEN1, Zhaoxuan ZHU1, Yi HU1
1 School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2 Chongqing Research Institute of Materials, Chongqing 400799, China
全文: PDF(9262 KB)   HTML ( 7 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用异步轧制、多向异步轧制、高温异步轧制、高温多向异步轧制四种不同的方式轧制双相镁锂合金板材。通过光学显微镜、MTS E43拉伸试验机和X射线衍射仪观察不同工艺轧制后合金的显微组织、力学性能以及织构特征,综合分析温度和轧制方向条件耦合对镁锂合金组织和力学性能的影响。结果表明:四种轧制工艺可以使α-Mg相沿轧制方向伸长,同时沿着轧制方向法向细化。高温多向异步轧制后α相厚度最低为2.6 μm。多向异步轧制后材料的屈服强度、抗拉强度、伸长率分别为149,167 MPa,14.5%,其综合力学性能最优。多向轧制使双峰织构沿ND方向45°偏转,高温轧制使双峰织构由基极向RD方向偏转的角度降低。轧制后样品R-cube织构组分最强,高温多向异步轧制使β-Li相轧制织构转变成为{001}〈100〉织构,有利于{011}〈1${\rm{\bar 1}}$1〉滑移系发生多滑移。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王格格
李晓燕
郭非
张紫璇
陈翠玉
朱召渲
胡怡
关键词 镁锂合金异步轧制多向异步轧制高温异步轧制高温多向异步轧制织构    
Abstract

Dual-phase magnesium-lithium alloys sheets were rolled at four different rolling methods: asynchronous rolling, multi-directional asynchronous rolling, high temperature asynchronous rolling and high temperature multi-directional asynchronous rolling. The microstructure, mechanical properties and texture characteristics were comprehensively analyzed through optical microscope, MTS E43 universal testing machine and X-ray diffraction, respectively. The effects of temperature and rolling direction on microstructure and mechanical properties of magnesium-lithium alloy were discussed. The results show that α-Mg phase is largely elongated along the rolling direction and becomes thinner along the normal direction. The lowest thickness of the α-Mg phase is 2.6 μm rolled by high temperature multi-directional asynchronous rolling. Multi-directional asynchronous rolling samples have the best mechanical properties as its yield strength, ultimate tensile strength, elongation are 149 MPa and 167 MPa, 14.5%, respectively.The double peaks texture is tilt along the normal direction with an angle of 45° by multi-directional rolling, while the RD tilt angle of double peaks texture decreases due to the high temperature rolling. The intensity of R-cube texture is the strongest after rolling. β-Li rolling texture is transformed into {001}〈100〉 texture by high temperature multi-directional asynchronous rolling, which is beneficial to the multi-slip of {011}〈1${\rm{\bar 1}}$1〉 slip system.

Key wordsmagnesium-lithium alloy    asynchronous rolling    multi-directional asynchronous rolling    high temperature asynchronous rolling    high temperature multi-directional asynchronous rolling    texture
收稿日期: 2021-12-14      出版日期: 2022-11-17
中图分类号:  TG146.2+2  
基金资助:重庆市科委面上项目(cstc2019jcyj-msxmX0111)
通讯作者: 郭非     E-mail: guofei@cqut.edu.cn
作者简介: 郭非(1989—), 男, 副教授, 博士, 研究方向: 金属材料设计, 联系地址: 重庆市巴南区红光大道69号重庆理工大学花溪校区第三实验楼B311(400054), E-mail: guofei@cqut.edu.cn
引用本文:   
王格格, 李晓燕, 郭非, 张紫璇, 陈翠玉, 朱召渲, 胡怡. 高温多向异步轧制对LZ91镁锂合金组织和力学性能的影响[J]. 材料工程, 2022, 50(11): 92-100.
Gege WANG, Xiaoyan LI, Fei GUO, Zixuan ZHANG, Cuiyu CHEN, Zhaoxuan ZHU, Yi HU. Effect of high temperature multidirectional asynchronous rolling on microstructure and mechanical properties of LZ91 magnesium-lithium alloy. Journal of Materials Engineering, 2022, 50(11): 92-100.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001196      或      http://jme.biam.ac.cn/CN/Y2022/V50/I11/92
Fig.1  轧机与轧制路径示意图
(a)轧机;(b)异步轧制;(c)多向异步轧制
Fig.2  不同轧制方式下LZ91镁锂合金RD-TD面中间层的显微组织
(a)未轧制;(b)AR;(c)MAR;(d)HAR;(e)HMAR
Fig.3  不同轧制方式下LZ91镁锂合金ND-RD面中间层的显微组织
(a)未轧制;(b)AR;(c)MAR;(d)HAR;(e)HMAR
Fig.4  不同轧制方式下镁锂合金ND-RD面α相厚度
Fig.5  不同方式轧制后镁锂合金应力-应变曲线
Rolling method Yield strength/MPa Ultimate tensile strength/MPa Elongation/%
Unrolled 89 131 39.3
AR 147 168 11.1
MAR 149 167 14.5
HAR 145 158 15.9
HMAR 131 152 25.8
Table 1  镁锂合金的力学性能
Fig.6  LZ91镁锂合金中间层α-Mg相(0001)面和(10${\rm{\bar 1}}$0)面的极图
(a)AR;(b)MAR;(c)HAR;(d)HMAR
Fig.7  不同轧制方式下LZ91镁锂合金中间层β-Li相的ODF图
(a)AR;(b)MAR;(c)HAR;(d)HMAR;(e)体心立方结构金属φ2=45°的理想织构示意图[27];(f),(g)在α丝织构和γ丝织构中排列的β-Li相织构强度演变
Rolling method Schmid factor value
(0001)
[${\rm{\bar 2}}$110]
(0001)
[1${\rm{\bar 2}}$10]
(0001)
[11${\rm{\bar 2}}$0]
(${\rm{\bar 1}}$2${\rm{\bar 1}}$${\rm{\bar 2}}$)
[${\rm{\bar 1}}$2${\rm{\bar 1}}$3]
(1${\rm{\bar 2}}$1${\rm{\bar 2}}$)
[1${\rm{\bar 2}}$13]
(${\rm{\bar 2}}$112)
[${\rm{\bar 2}}$11${\rm{\bar 3}}$]
(${\rm{\bar 2}}$11${\rm{\bar 2}}$)
[${\rm{\bar 2}}$113]
(${\rm{\bar 1}}$${\rm{\bar 1}}$22)
[${\rm{\bar 1}}$${\rm{\bar 1}}$2${\rm{\bar 3}}$]
(11${\rm{\bar 2}}$2)
[11${\rm{\bar 2}}$${\rm{\bar 3}}$]
(11${\rm{\bar 2}}$${\rm{\bar 2}}$)
[${\rm{\bar 1}}$${\rm{\bar 1}}$2${\rm{\bar 3}}$]
(${\rm{\bar 1}}$${\rm{\bar 1}}$2${\rm{\bar 2}}$)
[11${\rm{\bar 2}}$${\rm{\bar 3}}$]
AR 0.11 0.21 0.11 0.31 0.50 0.13 0.04 0.04 0.13 0.04 0.13
MAR 0.08 0.02 0.06 0.01 0.02 0.43 0.36 0.27 0.22 0.27 0.22
HAR 0.07 0.13 0.06 0.37 0.49 0.15 0.09 0.06 0.11 0.06 0.11
HMAR 0.09 0.03 0.06 0.03 0.06 0.46 0.39 0.21 0.16 0.21 0.16
Table 2  α-Mg相基面和锥面〈c+a〉滑移的SF值
Fig.8  LZ91镁锂合金中间层β-Li相λ织构取向分布
Rolling method Schmid factor value
(0${\rm{\bar 1}}$1)
[${\rm{\bar 1}}$11]
(0${\rm{\bar 1}}$1)
[111]
(011)
[1${\rm{\bar 1}}$1]
(011)
[11${\rm{\bar 1}}$]
(10${\rm{\bar 1}}$)
[1${\rm{\bar 1}}$1]
(10${\rm{\bar 1}}$)
[111]
(101)
[${\rm{\bar 1}}$11]
(101)
[11${\rm{\bar 1}}$]
(${\rm{\bar 1}}$10)
[11${\rm{\bar 1}}$]
(${\rm{\bar 1}}$10)
[111]
(110)
[${\rm{\bar 1}}$11]
(110)
[1${\rm{\bar 1}}$1]
AR 0.41 0 0.41 0 0.41 0 0.41 0 0 0 0 0
MAR 0.41 0 0.41 0 0.41 0 0.41 0 0 0 0 0
HAR 0.41 0 0.41 0 0.41 0 0.41 0 0 0 0 0
HMAR 0.41 0.41 0.41 0.41 0 0 0 0 0.41 0.41 0.41 0.41
Table 3  β-Li相{011}〈1${\rm{\bar 1}}$1〉滑移系的SF值
1 宁兴龙. 最轻的金属结构材料-镁锂合金[J]. 稀有金属快报, 2002, (10): 17- 18.
1 NING X L . Lightest metal structure material-Mg-Li alloy[J]. Rare Metals Letters, 2002, (10): 17- 18.
2 ZHANG H , HUANG G , LI J , et al. Influence of warm pre-stretching on microstructure and properties of AZ31 magnesium alloy[J]. Journal of Alloys and Compounds, 2013, 563, 150- 154.
doi: 10.1016/j.jallcom.2013.02.097
3 李红, 闫维嘉, 张禹, 等. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50 (2): 50- 61.
3 LI H , YAN W J , ZHANG Y , et al. Research progress on thermal cracking during welding of advanced aerospace materials[J]. Journal of Materials Engineering, 2022, 50 (2): 50- 61.
4 HOU X , LI Y , LV P , et al. Hot deformation behavior and microstructure evolution of a Mg-Gd-Nd-Y-Zn alloy[J]. Rare Metals, 2016, 35 (7): 532- 536.
doi: 10.1007/s12598-015-0507-4
5 HU G , ZHANG D , ZHAO D , et al. Microstructures and mechanical properties of extruded and aged Mg-Zn-Mn-Sn-Y alloys[J]. Transactions of Nonferrous Metals Society of China, 2014, 24 (10): 3070- 3075.
doi: 10.1016/S1003-6326(14)63444-0
6 夏丹丹, 刘洋, 王思仪, 等. 镁锂钙合金作为骨植入材料的体内外研究(英文)[J]. 中国科学: 材料科学, 2019, 62 (2): 256- 272.
6 XIA D D , LIU Y , WANG S Y , et al. In vitro and in vivo study of Mg-Li-Ca alloy as bone implant material[J]. Science China Materials, 2019, 62 (2): 256- 272.
7 王保杰, 姜春龙, 李传强, 等. 镁锂合金腐蚀行为研究进展[J]. 航空材料学报, 2019, 39 (1): 1- 8.
7 WANG B J , JIANG C L , LI C Q , et al. Research progress on co-rrosion behavior of magnesium-lithium alloys[J]. Journal of Ae-ronautical Materials, 2019, 39 (1): 1- 8.
8 王谦, 张明玉, 闵光辉. 退火对轧制LA43M镁锂合金组织与性能的影响[J]. 新疆有色金属, 2019, 42 (2): 102- 104.
8 WANG Q , ZHANG M Y , MIN G H . Effect of annealing on microstructure and properties of rolled LA43M Mg-Li alloy[J]. Xinjiang Nonferrous Metals, 2019, 42 (2): 102- 104.
9 刘金学, 解海涛, 郭晓光, 等. 双相LZ91镁锂合金超塑性变形行为及组织演变[J]. 中国有色金属学报, 2022, 32 (3): 713- 720.
9 LIU J X , XIE H T , GUO X G , et al. Super plastic deformation behavior and microstructure evolution of dual-phase LZ91 Mg-Li alloy[J]. The Chinese Journal of Nonferrous Metals, 2022, 32 (3): 713- 720.
10 刘楚明, 朱秀荣, 周海涛. 镁合金相图集[M]. 长沙: 中南大学出版社, 2006.
10 LIU C M , ZHU X R , ZHOU H T . Magnesium alloy phase atlas[M]. Changsha: Central South University Press, 2006.
11 刘斌, 刘佳佳, 李武超, 等. 热处理工艺对α+β双相镁锂合金组织和力学性能的影响[J]. 热加工工艺, 2017, 46 (14): 202- 205.
11 LIU B , LIU J J , LI W C , et al. Effect of heat treatment process on microstructure and mechanical properties of (α+β) dual-phase Mg-Li alloy[J]. Hot Working Technology, 2017, 46 (14): 202- 205.
12 江海涛, 段晓鸽, 蔡正旭, 等. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43 (8): 7- 12.
12 JIANG H T , DUAN X G , CAI Z X , et al. Superplastic process and deformation mechanism of asynchronously rolled AZ31 magnesium alloy sheet[J]. Journal of Materials Engineering, 2015, 43 (8): 7- 12.
13 GUO F , ZHANG D , FAN X , et al. Deformation behavior of AZ31 Mg alloys sheet during large strain hot rolling process: a study on microstructure and texture evolutions of an intermediate-rolled sheet[J]. Journal of Alloys and Compounds, 2016, 663, 140- 147.
14 GUO F , ZHANG D , YANG X , et al. Effect of rolling speed on microstructure and mechanical properties of AZ31 Mg alloys rolled with a wide thickness reduction range[J]. Materials Science and Engineering: A, 2014, 619, 66- 72.
15 张丁非, 戴庆伟, 胡耀波, 等. 镁合金板材轧制成型的研究进展[J]. 材料工程, 2009, (10): 85- 90.
15 ZHANG D F , DAI Q W , HU Y B , et al. Research progress on rolling and forming of magnesium alloy sheets[J]. Journal of Materials Engineering, 2009, (10): 85- 90.
16 GUO F , PEI R , JIANG L , et al. The role of recrystallization and grain growth in optimizing the sheet texture of magnesium alloys with calcium addition during annealing[J]. Journal of Magnesium and Alloys, 2020, 8 (1): 252- 268.
17 蔡正旭, 唐荻, 江海涛, 等. 变形Mg-1.5Zn-0.2Gd合金退火过程中组织与织构演变过程[J]. 材料工程, 2014, (7): 44- 49.
17 CAI Z X , TANG D , JIANG H T , et al. Microstructure and texture evolution of deformed Mg-1.5Zn-0.2Gd alloy during annealing[J]. Journal of Materials Engineering, 2014, (7): 44- 49.
18 GUO F , JIANG L , YANG M , et al. Tailoring the rolling texture of AZ31 Mg alloy with calcium and tin addition[J]. Advanced Engineering Materials, 2019, 21 (4): 1800920.
19 周蕾, 史庆南, 王军丽, 等. 异步累积叠轧纯铜材的取向变化过程与力学性能[J]. 材料工程, 2013, (3): 38- 41.
19 ZHOU L , SHI Q N , WANG J L , et al. Orientation change process and mechanical properties of asynchronous cumulative rolled pure copper[J]. Journal of Materials Engineering, 2013, (3): 38- 41.
20 蔡祥. 合金化及轧制变形对双相镁锂合金力学和腐蚀行为影响的研究[D]. 镇江: 江苏科技大学, 2019.
20 CAI X. Effect of alloying and rolling deformation on mechanical and corrosion behavior of dual-phase Mg-Li alloy[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.
21 姚玮. 冷轧工艺对LZ91镁锂合金显微组织与力学性能的影响[D]. 湘潭: 湖南科技大学, 2016.
21 YAO W. Effect of cold rolling process on microstructure and mechanical properties of LZ91 Mg-Li alloy[D]. Xiangtan: University of Science and Technology of Hunan, 2016.
22 周栋华, 杨璠, 赵兴国, 等. Mg-9Li-3.57Al-0.5Si-0.25Ca合金的组织转变与力学性能[J]. 热加工工艺, 2020, 49 (4): 110- 113.
22 ZHOU D H , YANG F , ZHAO X G , et al. Microstructure transformation and mechanical properties of Mg-9Li-3.57Al-0.5Si-0.25Ca alloy[J]. Hot Working Technology, 2020, 49 (4): 110- 113.
23 邹云. 镁锂合金成分和处理工艺对变形机制及性能的影响[D]. 哈尔滨: 哈尔滨工程大学, 2016.
23 ZOU Y. Effect of composition and treatment technology on deformation mechanism and properties of Mg-Li alloy[D]. Harbin: Harbin Engineering University, 2016.
24 宋旭东, 袁鸽成, 黎小辉, 等. 异步轧制Mg-3Zn-2(Ce/La)-1Mn合金的微观组织及织构演变[J]. 金属热处理, 2020, 45 (2): 1- 6.
24 SONG X D , YUAN G C , LI X H , et al. Microstructure and texture evolution of Mg-3Zn-2(Ce/La)-1Mn alloy by asynchronous rolling[J]. Heat Treatment of Metals, 2020, 45 (2): 1- 6.
25 BACHMANN F , HIELSCHER R , SCHAEBEN H . Texture analysis with MTEX-free and open source software toolbox[J]. Solid State Phenomena, 2010, 160 (160): 63- 68.
26 BUNGE H J . Texture analysis in materials science: mathematical methods[J]. Butterworths, 1982, 405- 419.
27 GUO F , LIU L , MA Y L , et al. Slip behavior and its effect on rolling texture development in a dual-phase Mg-Li alloy[J]. Journal of Alloys and Compounds, 2019, 813, 152117.
28 MÁTHIS K , NYILAS K , AXT A , et al. The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction[J]. Acta Materialia, 2004, 52 (10): 2889- 2894.
29 ANDO S , TAKASHIMA K , TONDA H . Molecular dynamics simulation of (c+a) edge dislocation core structure in HCP crystal[J]. Materials Transactions, JIM, 1996, 37 (3): 319- 322.
[1] 胡广, 赵英杰, 马胜国, 张团卫, 赵聃, 王志华. 考虑位错密度和损伤的NiCoCrFe高熵合金晶体塑性有限元分析[J]. 材料工程, 2022, 50(3): 60-68.
[2] 支盛兴, 李兴刚, 袁家伟, 李永军, 马鸣龙, 石国梁, 张奎. 挤压态AZ40镁合金热变形行为及热加工图分析[J]. 材料工程, 2021, 49(11): 136-146.
[3] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[4] 甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, Vladimir Petrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
[5] 徐昀华, 张春华, 张松, 乔瑞庆, 张静波. 激光增材制造24CrNiMo合金钢显微组织特征[J]. 材料工程, 2020, 48(11): 147-154.
[6] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[7] 储双杰, 沈侃毅, 沙玉辉, 陈曦. 无取向硅钢形变储能取向依赖性及其对再结晶织构的影响[J]. 材料工程, 2019, 47(8): 147-153.
[8] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[9] 刘恭涛, 刘志桥, 杨平, 毛卫民. 初次再结晶组织和渗氮量对低温渗氮取向硅钢二次再结晶行为的影响[J]. 材料工程, 2018, 46(1): 16-24.
[10] 李杰, 王超磊, 刘玉德, 高东明, 张会臣. 激光微织构与自组装对铝合金表面润湿性的影响[J]. 材料工程, 2018, 46(1): 53-60.
[11] 梁瑞洋, 杨平, 毛卫民. 冷轧压下率及初始高斯晶粒取向度对超薄取向硅钢织构演变与磁性能的影响[J]. 材料工程, 2017, 45(6): 87-96.
[12] 邵媛媛, 郭琪. 3% Si电工钢铸坯中柱状晶的形变、再结晶行为及织构演变规律[J]. 材料工程, 2017, 45(11): 108-114.
[13] 孙强, 李志超, 米振莉, 党宁. CGO硅钢初次再结晶组织及织构演变规律[J]. 材料工程, 2016, 44(9): 38-43.
[14] 陈平, 项欣, 李俊玲, 邵天敏, 刘光磊. 沟槽型织构摩擦学性能的数值模拟与实验研究[J]. 材料工程, 2016, 44(6): 31-37.
[15] 党宁, 李志超, 唐荻, 张文康, 孙强. 0.20mm CGO硅钢高温退火Goss晶粒起源及异常长大行为研究[J]. 材料工程, 2016, 44(5): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn