Please wait a minute...
 
2222材料工程  2023, Vol. 51 Issue (1): 36-51    DOI: 10.11868/j.issn.1001-4381.2022.000285
  综述 本期目录 | 过刊浏览 | 高级检索 |
量子点/碳复合材料在碱金属离子电池的应用进展
吴立清1, 冯柳2,*(), 毛晓璇1, 穆洪亮1, 刘志超1, 牛金叶2, 高蔷2
1 山东理工大学 材料科学与工程学院, 山东 淄博 255000
2 山东理工大学 分析测试中心, 山东 淄博 255000
Recent progress of quantum dots/carbon composites in alkali metal-ion batteries
Liqing WU1, Liu FENG2,*(), Xiaoxuan MAO1, Hongliang MU1, Zhichao LIU1, Jinye NIU2, Qiang GAO2
1 College of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
2 Analytical Testing Center, Shandong University of Technology, Zibo 255000, Shandong, China
全文: PDF(11901 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)      
摘要 

碱金属离子电池作为可充电电池, 是目前重要的储能设备之一。它凭借能量密度大、工作电压高、无"记忆效应"、自放电小、绿色无污染等优点在近些年来受到人们的广泛关注。电极材料是影响碱金属离子电池电化学性能的重要因素之一, 因此, 寻求比容量高、结构稳定的电极材料是推动碱金属离子电池发展的关键。量子点/碳复合材料(QDs/C)集合量子点与碳材料的优势, 是碱金属离子电池优异的候选电极材料。本文首先对量子点进行简要介绍, 然后分别综述单质量子点/碳复合材料、化合物量子点/碳复合材料及异质结构量子点/碳复合材料在碱金属离子电池中的应用进展。最后, 分析量子点/碳复合材料作为碱金属离子电池电极材料的优势与不足, 针对目前存在的问题提出了未来发展的方向: (1)探索新型方法, 解决量子点及其复合材料的团聚问题; (2)研究SEI膜的结构性能等, 解决首次库仑效率偏低的问题; (3)明确反应机理, 获取更优异的电化学性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴立清
冯柳
毛晓璇
穆洪亮
刘志超
牛金叶
高蔷
关键词 碱金属离子电池量子点/碳复合材料异质结构协同作用电化学性能    
Abstract

As a kind of rechargeable batteries, alkali metal-ion battery is one of the important energy storage devices at present. Due to the advantages of enhanced energy density, high work potential, no "memory effect", small self-discharge, environment-friendly, alkali metal-ion batteries have attracted extensive attention in recent years. Electrode material is one of the most important factors that influence the electrochemical performances of alkali metal-ion batteries. Therefore, the key to the improvement of alkali metal-ion batteries is to seek electrode materials with high specific capacity and stable structures. Quantum dots/carbon composites (QDs/C), integrating the advantages of quantum dot materials and carbon materials have turned out to be outstanding candidates for electrode materials of alkali metal-ion batteries. In this work, a brief introduction of quantum dot materials was given at first, and then the progress of QDs/C, including element QDs/C, compound QDs/C and heterostructure QDs/C in alkali metal-ion batteries, was summarized respectively. The advantages and disadvantages of QDs/C as electrode materials of alkali metal-ion batteries were discussed in the last part.In view of the shortcoming, the future development goal was proposed: (1)Exploring the innovative approach to slove the agglomeration of quantum dots and the relative composites; (2)Researching the structure and property of SEI film to improve the initial coulombic efficiency; (3)Clarifying the reaction mechanism to obtain the better electrochemical performance.

Key wordsalkali metal-ion battery    quantum dots/carbon composite    heterostructure    synergistic effect    electrochemical performance
收稿日期: 2022-04-10      出版日期: 2023-01-16
中图分类号:  TM911  
基金资助:山东省自然科学基金青年基金项目(ZR2020QE145)
通讯作者: 冯柳     E-mail: willow-feng@163.com
作者简介: 冯柳(1978—),女,教授,博士,研究方向为储能材料的制备、结构演化及性能研究,联系地址:山东省淄博市张店区马尚镇山东理工大学西校区(255000),E-mail:willow-feng@163.com
引用本文:   
吴立清, 冯柳, 毛晓璇, 穆洪亮, 刘志超, 牛金叶, 高蔷. 量子点/碳复合材料在碱金属离子电池的应用进展[J]. 材料工程, 2023, 51(1): 36-51.
Liqing WU, Liu FENG, Xiaoxuan MAO, Hongliang MU, Zhichao LIU, Jinye NIU, Qiang GAO. Recent progress of quantum dots/carbon composites in alkali metal-ion batteries. Journal of Materials Engineering, 2023, 51(1): 36-51.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2022.000285      或      http://jme.biam.ac.cn/CN/Y2023/V51/I1/36
Electrode material Synthesis method Initial discharge capacity/(mAh·g-1) Initial coulombic efficiency/% Cycling capacity/(mAh·g-1) Application Reference
NH2-GQD@CNT In-situ hydrothermal 1029 61.6 483 at 1 A·g-1 after 350 cycles LIBs, anode [15]
CQDHC Carbonization 823 39.5 140 at 0.5 A·g-1 after 500 cycles PIBs, anode [28]
CDs@rGO Microwave 698 44.4 244 at 0.2 A·g-1 after 840 cycles PIBs, anode [29]
SiQDs@C Space-confined atom-cluster catalytic strategy 1203 64.6 527 at 2 A·g-1 after 1500 cycles LIBs, anode [30]
SnQDs@CNFs Electrospinning technology 1176 71.0 685 at 0.2 A·g-1 after 500 cycles LIBs, anode [31]
Sn/NS-CNFs@rGO Electrospinning technology 1136 62.2 373 at 1 A·g-1 after 5000 cycles SIBs, anode [32]
3DOP Ge@N-C Nanospheres template-confined strategy 2439 32.7 90% capacity retention at 5 A·g-1 after 1200 cycles LIBs, anode [27]
B@rGO Liquid-phase exfoliation 2651 52.6 836 at 0.1 A·g-1 after 500 cycles LIBs, anode [25]
IQDs@RGO Stir, vacuum filtration, chemical reduction 173 141 at 0.1 A·g-1 after 500 cycles SIBs, cathode [33]
Table 1  单质量子点/碳复合材料的制备方法和电化学性能
Fig.1  GQD@CNT的制备过程及循环性能[15]
(a)制备过程示意图;(b)循环性能
Fig.2  合金反应型单质量子点与碳材料复合的制备过程示意图
(a)SiQDs/C[26];(b)3DOP Ge@N-C[27];(c)Sn/NS-CNFs@rGO[32];(d)SbQD@C[39]
Electrode material Synthesis method Initial discharge capacity/(mAh·g-1) Initial coulombic efficiency/% Cycling capacity/(mAh·g-1) Application Reference
Oxide QDs/C
N-C@MnOQD/CNT Chemical reaction,
annealing
1367 61.0 883 at 1 A·g-1 after 1000 cycles LIBs, anode [41]
MnOQD@CHNTs Molecular beam template approach 481 223 at 2 A·g-1 after 1000 cycles SIBs, anode [42]
SnO2QDs@GF Hydrothermal 2500 65.9 134 at 10 A·g-1 after 5000 cycles LIBs, anode [8]
SnO2/NC Hydrothermal, self-polymerization 1716 72.9 753 at 1 A·g-1 after 1500 cycles LIBs, anode [6]
SnO2@C/GO Ball-milling, water-phase self-assembly 1710 57.5 1156 at 1 A·g-1 after 350 cycles LIBs, anode [43]
GE-Co3O4 Chemical reaction 1687 69.0 750 at 1 A·g-1 after 100 cycles LIBs, anode [44]
2-CuO@C Electrospinning 828 67.0 401 at 0.5 A·g-1 after 500 cycles SIBs, anode [45]
TiO2QDs@C Reverse microemulsion, heat treament 841 54.8 68.6% at 5 A·g-1 after 10000 cycles LIBs, anode [46]
ZnOQDs@CMS Hydrothermal, annealing 1542 55.0 565 at 1 A·g-1 after 350 cycles LIBs, anode [2]
Fe2O3QDs@rGO Hydrothermal, annealing 1384 80.1 81.6% at 0.2 A·g-1 after 300 cycles LIBs, anode [47]
Fe3O4@LCS-500 Microwave, annealing 65.8 1126.2 at 0.1 A·g-1 after 250 cycles LIBs, anode [7]
V2O5QDs/rGO Two-step solution phase synthesis 288 100 at 1 A·g-1 after 300 cycles LIBs, cathode [48]
Sulfide QDs/C
SnSQDs@NC Hydrothermal, carbonization 489 61.3 75% at 1 A·g-1 after 500 cycles SIBs, anode [49]
SnS@HMCFs Hydrothermal, electrospinning, high-temperature pyrolysis 621 68.8 245.5 at 1 A·g-1 after 1000 cycles PIBs, anode [50]
MoS2-N-C Liquid-phase synthesis, annealing 1240 261 at 10 A·g-1 after 1950 cycles LIBs, anode [51]
FeS2QDs/FGS Heat treatment 742 92.0 552 at 0.5 A·g-1 after 100 cycles SIBs, anode [52]
FeS@SPC Self-template method 869 51.8 232 at 1 A·g-1 after 3000 cycles PIBs, anode [53]
ZnSQD@NC Polyol-assisted pyro-synthetic method 965 83.0 620 at 1 A·g-1 after 500 cycles LIBs, anode [54]
ZnSQDs-rGO Solvothermal 720 63.0 122 at 1 A·g-1 after 500 cycles PIBs, anode [55]
M-Co9S8@NCF In-situ anchoring and annealing 1403 73.0 617 at 1 A·g-1 after 500 cycles LIBs, anode [56]
Selenide QDs/C
a-SnSe/rGO Hydrothermal, freeze
drying
873 70.0 398 at 1 A·g-1 after 1400 cycles SIBs, anode [57]
SnSe2QDs/rGO Hydrothermal, freeze
drying, thermal annealing
1183 66.1 92.2% at 2 A·g-1 after 3000 cycles LIBs, anode [58]
CSC(Co3Se4QDs/NC) Solvothermal, carbonization 573 66.6 360 at 0.5 A·g-1 after 3200 cycles PIBs, anode [59]
Phosphide QDs/C
FeP@OCF/CNF In situ reductive
phosphatization/carbonization
913 72.0 435 at 1 A·g-1 after 200 cycles SIBs, anode [60]
FeP@NC Annealing, phosphatization 1259 52.4 374 at 0.5 A·g-1 after 2000 cycles SIBs, anode [5]
MoP@PC Mixing, annealing 21.9 161 at 5 A·g-1 after 1000 cycles PIBs, anode [61]
Ni2P@NPC Freeze-drying, carbonization 1351 24.7 212 at 1 A·g-1 after 5000 cycles PIBs, anode [62]
Co2PQD/NPC Solvothermal, annealing 906 72.7 431.4 at 1 A·g-1 after 1600 cycles LIBs, anode [63]
Nitride(carbide)QDs/C
VNQDs/NC Solution-phase assisted
thermal nitridation
1045 75.7 602 at 0.25 A·g-1 after 250 cycles LIBs, anode [64]
VNQDs/N-C Self-polymerization 1168 42.7 225.7 at 30 A·g-1 after 30000 cycles SIBs, anode [65]
VNQDs/CM Solution combustion
synthesis method
376 72.9 215 at 0.5 A·g-1 after 500 cycles PIBs, anode [66]
Mo2N@NC Sol-gel, calcination 1488 58.0 96.8% at 2 A·g-1 after 3000 cycles LIBs, anode [67]
Mo2NQD@MoO3@NC Sol-gel route 1685 61.8 700 at 1 A·g-1 after 700 cycles LIBs, anode [68]
Mo2C/NCNFs Electrospinning 468 53.9 74% at 1 A·g-1 after 1000 cycles PIBs, anode [69]
CVCx-QDs/nFCM Solution combustion
synthesis method,
carbothermal reduction
834 54.3 130 at 1 A·g-1 after 1500 cycles PIBs, anode [70]
Other compound QDs/C
SbSn@NCNFs Electrospinning 808 72.9 331 at 0.1 A·g-1 after 500 cycles SIBs, anode [71]
Ni3Sn4-rGO Microwave irradiation 1117 78.2 1311 at 0.1 A·g-1 after 500 cycles LIBs, anode [72]
G/LFPQDs@C Microreactor strategy 99% at 20 C after 1000 cycles LIBs, cathode [73]
NaVPO4F/C Electrospinning 126 88.0 96.5% at 2 C after 1000 cycles SIBs, cathode [74]
NVP-QDs-SL/HCS Self-assemble of LCs 149 56% at 20 C after 3000 cycles SIBs, cathode [75]
Table 2  化合物量子点/碳复合材料的制备方法和电化学性能
Fig.3  MnOQD@CHNTs的制备及长循环性能[42]
(a)制备、结构及量子点效应示意图;(b)LIBs中的长循环性能
Fig.4  SnSe2QDs/rGO的制备,微观形貌及长循环性能[58]
(a)合成示意图;(b)SEM图;(c)HRTEM图;(d)长循环性能
Fig.5  FeP@NC的循环性能及储钠机理[5]
(a)长循环性能;(b)储钠过程示意图
Fig.6  VNQDs/N-C(a)[65]和CVCxQDs/nFCM(b)[70]的制备过程示意图
Electrode material Synthesis method Initial discharge capacity/(mAh·g-1) Initial coulombic efficiency/% Cycling capacity/(mAh·g-1) Application Reference
NGQD/Sn-NG Self-assemble, thermal reduction 850 64.0 184 at 5 A·g-1 after 2000 cycles SIBs, anode [80]
Bi/TiO2HQDs@NC Self-template, in siturecrystallization, self-assembly 967 42.0 124 at 10 A·g-1 after 10000 cycles SIBs, anode [81]
CoSx@NSC Sol-gel 696 94.5 87.5% at 1 A·g-1 after 200 cycles SIBs, anode [82]
SnO2@SnS2@NG Hydrothermal 77.2 510 at 5 A·g-1 after 1000 cycles LIBs, anode [83]
MoSe2-MoO3 Carbonization/selenization 63.1 218.5 at 3 A·g-1 after 2000 cycles SIBs, anode [84]
Table 3  异质结构量子点/碳复合材料的制备方法和电化学性能
1 YU W J , HE W , WANG C , et al. Confinement of TiO2 quantum dots in graphene nanoribbons for high-performance lithium and sodium ion batteries[J]. Journal of Alloys and Compounds, 2022, 898, 162856.
doi: 10.1016/j.jallcom.2021.162856
2 FERNANDO J F S , ZHANG C , FIRESTEIN K L , et al. ZnO quantum dots anchored in multilayered and flexible amorphous carbon sheets for high performance and stable lithium ion batteries[J]. Journal of Materials Chemistry A, 2019, 7 (14): 8460- 8471.
doi: 10.1039/C8TA12511B
3 LIU J , ZHU M , MU K , et al. Engineering a novel microcapsule of Cu9S5 core and SnS2 quantum dot/carbon nanotube shell as a Li-ion battery anode[J]. Chemical Communications, 2021, 57 (98): 13397- 13400.
doi: 10.1039/D1CC05657C
4 YANG Y , ZHU J , WANG P , et al. In situ implanting fine ZnSe nanoparticles into N-doped porous carbon nanosheets as an exposed highly active and long-life anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 876, 160135.
doi: 10.1016/j.jallcom.2021.160135
5 LI Z , ZHAO H , DU Z , et al. Iron phosphide@N-doped carbon nanosheets with open-framework structure as an ultralong lifespan and outstanding rate performance electrode material for sodium-ion batteries[J]. Journal of Power Sources, 2020, 465, 228253.
doi: 10.1016/j.jpowsour.2020.228253
6 CHENG Y , WANG S , ZHOU L , et al. SnO2 quantum dots: rational design to achieve highly reversible conversion reaction and stable capacities for lithium and sodium storage[J]. Small, 2020, 16 (26): 2000681.
doi: 10.1002/smll.202000681
7 PENG Q , GUO C , QI S , et al. Ultra-small Fe3O4 nanodots encapsulated in layered carbon nanosheets with fast kinetics for lithium/potassium-ion battery anodes[J]. RSC Advances, 2021, 11 (3): 1261- 1270.
doi: 10.1039/D0RA08503K
8 GAO L , WU G , MA J , et al. SnO2 quantum dots@graphene framework as a high-performance flexible anode electrode for lithium-ion batteries[J]. ACS Applied Materials and Interfaces, 2020, 12 (11): 12982- 12989.
doi: 10.1021/acsami.9b22679
9 WU M , CHEN H , LV L P , et al. Graphene quantum dots modification of yolk-shell Co3O4@CuO microspheres for boosted lithium storage performance[J]. Chemical Engineering Journal, 2019, 373, 985- 994.
doi: 10.1016/j.cej.2019.05.100
10 GUO J , GAO F , LI D , et al. Novel strategy of constructing hollow Ga2O3@N-CQDs as a self-healing anode material for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (36): 13692- 13700.
11 LUO F , FENG X , ZENG L , et al. In situ simultaneous encapsulation of defective MoS2 nanolayers and sulfur nanodots into SPAN fibers for high rate sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 404, 126430.
doi: 10.1016/j.cej.2020.126430
12 LU D , YUAN C , YU M , et al. Nanoporous composites of CoOx quantum dots and ZIF-derived carbon as high-performance anodes for lithium-ion batteries[J]. ACS Omega, 2020, 5 (34): 21488- 21496.
doi: 10.1021/acsomega.0c02037
13 汪晨阳, 张安邦, 常增花, 等. 锂离子电池用多孔电极结构设计及制备技术进展[J]. 材料工程, 2022, 50 (1): 67- 79.
13 WANG C Y , ZHANG A B , CHANG Z H , et al. Progress in structure design and preparation of porous electrodes for lithium ion batteries[J]. Journal of Materials Engineering, 2022, 50 (1): 67- 79.
14 CHEN W , ZHANG X , PENG Y , et al. One-pot scalable synthesis of pure phase Ni3S4 quantum dots as a versatile electrode for high performance hybrid supercapacitors and lithium ion batteries[J]. Journal of Power Sources, 2019, 438, 227004.
doi: 10.1016/j.jpowsour.2019.227004
15 ZHAO X , WU Y , WANG Y , et al. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes[J]. Nano Research, 2020, 13 (4): 1044- 1052.
doi: 10.1007/s12274-020-2741-9
16 HAN K , ZHAO W , YU Q , et al. Marcasite-FeS2@carbon nanodots anchored on 3D cell-like graphenic matrix for high-rate and ultrastable potassium ion storage[J]. Journal of Power Sources, 2020, 469, 228429.
doi: 10.1016/j.jpowsour.2020.228429
17 KUMAR R , SAHOO S , JOANNI E , et al. Heteroatom doped graphene engineering for energy storage and conversion[J]. Materials Today, 2020, 39, 47- 65.
doi: 10.1016/j.mattod.2020.04.010
18 ELSAYED M H , JAYAKUMAR J , ABDELLAH M , et al. Visible-light-driven hydrogen evolution using nitrogen-doped carbon quantum dot-implanted polymer dots as metal-free photocatalysts[J]. Applied Catalysis B, 2021, 283, 119659.
doi: 10.1016/j.apcatb.2020.119659
19 LIN X , LIU C , WANG J , et al. Graphitic carbon nitride quantum dots and nitrogen-doped carbon quantum dots co-decorated with BiVO4 microspheres: a ternary heterostructure photocatalyst for water purification[J]. Separation and Purification Technology, 2019, 226, 117- 127.
doi: 10.1016/j.seppur.2019.05.093
20 LI S , SU W , WU H , et al. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids[J]. Nature Biomedical Engineering, 2020, 4 (7): 704- 716.
doi: 10.1038/s41551-020-0540-y
21 GAO Z , XU B , MA M , et al. Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption[J]. Composites: Part B, 2019, 179, 107417.
doi: 10.1016/j.compositesb.2019.107417
22 LI M , CHEN T , GOODING J J , et al. Review of carbon and graphene quantum dots for sensing[J]. ACS Sensors, 2019, 4 (7): 1732- 1748.
doi: 10.1021/acssensors.9b00514
23 XIE J , LU Y C . A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11 (1): 2499.
doi: 10.1038/s41467-020-16259-9
24 吴怡芳, 崇少坤, 柳永宁, 等. 碳纳米材料构建高性能锂离子和锂硫电池研究进展[J]. 材料工程, 2020, 48 (4): 25- 35.
24 WU Y F , CHONG S K , LIU Y N , et al. Research progress on carbon nano-materials to construct Li-ion and Li-S batteries of high performance[J]. Journal of Materials Engineering, 2020, 48 (4): 25- 35.
25 WANG H , AN D , TIAN P , et al. Incorporating quantum-sized boron dots into 3D cross-linked rGO skeleton to enable the activity of boron anode for favorable lithium storage[J]. Chemical Engineering Journal, 2021, 425, 130659.
doi: 10.1016/j.cej.2021.130659
26 WEI Y , YU H , LI H , et al. Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes[J]. Materials Research Bulletin, 2013, 48 (10): 4072- 4077.
doi: 10.1016/j.materresbull.2013.06.030
27 WANG Y , LUO S , CHEN M , et al. Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high-performance Li-ion battery[J]. Advanced Functional Materials, 2020, 30 (16): 2000373.
doi: 10.1002/adfm.202000373
28 GUO Y , FENG Y , LI H , et al. Carbon quantum dots in hard carbon: an approach to achieving PIB anodes with high potassium adsorption[J]. Carbon, 2022, 189, 142- 151.
doi: 10.1016/j.carbon.2021.12.038
29 ZHANG E , JIA X , WANG B , et al. Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode[J]. Advanced Science, 2020, 7 (15): 2000470.
doi: 10.1002/advs.202000470
30 CHEN B , ZU L , LIU Y , et al. Space-confined atomic clusters catalyze superassembly of silicon nanodots within carbon frameworks for use in lithium-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59 (8): 3137- 3142.
doi: 10.1002/anie.201915502
31 ZHANG G , ZHU J , ZENG W , et al. Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries[J]. Nano Energy, 2014, 9, 61- 70.
doi: 10.1016/j.nanoen.2014.06.030
32 LUO L , SONG J , SONG L , et al. Flexible conductive anodes based on 3D hierarchical Sn/NS-CNFs@rGO network for sodium-ion batteries[J]. Nano-Micro Letters, 2019, 11 (1): 63.
doi: 10.1007/s40820-019-0294-9
33 GONG D , WANG B , ZHU J , et al. An iodine quantum dots based rechargeable sodium-iodine battery[J]. Advanced Energy Materials, 2017, 7 (3): 1601885.
doi: 10.1002/aenm.201601885
34 ZHU C , CHAO D , SUN J , et al. Enhanced lithium storage performance of CuO nanowires by coating of graphene quantum dots[J]. Advanced Materials Interfaces, 2015, 2 (2): 1400499.
doi: 10.1002/admi.201400499
35 DARYABARI S , MANSOURI S , BEHESHTIAN J , et al. A computational study on the novel defects of graphene quantum dot as a promising anode material for sodium ion battery[J]. Materials Chemistry and Physics, 2021, 265, 124484.
doi: 10.1016/j.matchemphys.2021.124484
36 LI Y , WU F , JIN X , et al. Preparation and electrochemical properties of graphene quantum dots/biomass activated carbon electrodes[J]. Inorganic Chemistry Communications, 2020, 112, 107718.
doi: 10.1016/j.inoche.2019.107718
37 CHEN Y , ZOU Y , SHEN X , et al. Ge nanoparticles uniformly immobilized on 3D interconnected porous graphene frameworks as anodes for high-performance lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 69, 161- 173.
doi: 10.1016/j.jechem.2021.12.051
38 ZHANG Y , YAN D , LIU Z , et al. A SnOx quantum dots embedded carbon nanocage network with ultrahigh Li storage capacity[J]. ACS Nano, 2021, 15 (4): 7021- 7031.
doi: 10.1021/acsnano.1c00088
39 QIU T , YANG L , XIANG Y , et al. Heterogeneous interface design for enhanced sodium storage: Sb quantum dots confined by functional carbon[J]. Small Methods, 2021, 5 (7): 2100188.
doi: 10.1002/smtd.202100188
40 LUO B , WANG B , LI X , et al. Graphene-confined Sn nanosheets with enhanced lithium storage capability[J]. Advanced Materials, 2012, 24 (26): 3538- 3543.
doi: 10.1002/adma.201201173
41 HUANG S , YANG L , GAO M , et al. Well-dispersed MnO-quantum-dots/N-doped carbon layer anchored on carbon nanotube as free-standing anode for high-performance Li-ion batteries[J]. Electrochimica Acta, 2019, 319, 302- 311.
doi: 10.1016/j.electacta.2019.06.155
42 LI H , JIANG L , FENG Q , et al. Ultra-fast transfer and high storage of Li+/Na+ in MnO quantum dots@carbon hetero-nanotubes: appropriate quantum dots to improve the rate[J]. Energy Storage Materials, 2019, 17, 157- 166.
doi: 10.1016/j.ensm.2018.07.021
43 LI B , BAO S , TAN Q , et al. Engineering tin dioxide quantum dots in a hierarchical graphite and graphene oxide framework for lithium-ion storage[J]. Journal of Colloid and Interface Scicnce, 2021, 600, 649- 659.
doi: 10.1016/j.jcis.2021.05.070
44 PARK Y J , LEE K S , SHIM J , et al. Suppression of volume expansion by graphene encapsulated Co3O4 quantum dots for boosting lithium storage[J]. Journal of Industrial and Engineering Chemistry, 2021, 95, 333- 339.
doi: 10.1016/j.jiec.2021.01.004
45 WANG X , LIU Y , WANG Y , et al. CuO quantum dots embedded in carbon nanofibers as binder-free anode for sodium ion batteries with enhanced properties[J]. Small, 2016, 12 (35): 4865- 4872.
doi: 10.1002/smll.201601474
46 YIN J , YU J , SHI X , et al. TiO2 quantum dots confined in 3D carbon framework for outstanding surface lithium storage with improved kinetics[J]. Journal of Colloid and Interface Science, 2021, 582, 874- 882.
doi: 10.1016/j.jcis.2020.08.076
47 MA M , CAO L , LI J , et al. Tailoring mulberry-like Fe2O3 architecture assembled by quantum dots on rGO to enable high pseudocapacitance and controllable solid electrolyte interphase[J]. Chemical Engineering Journal, 2020, 388, 124119.
doi: 10.1016/j.cej.2020.124119
48 HAN C , YAN M , MAI L , et al. V2O5 quantum dots/graphene hybrid nanocomposite with stable cyclability for advanced lithium batteries[J]. Nano Energy, 2013, 2 (5): 916- 922.
doi: 10.1016/j.nanoen.2013.03.012
49 VEERASUBRAMANI G K , PARK M S , CHOI J Y , et al. Ultrasmall SnS quantum dots anchored onto nitrogen-enriched carbon nanospheres as an advanced anode material for sodium-ion batteries[J]. ACS Applied Materials and Interfaces, 2020, 12 (6): 7114- 7124.
doi: 10.1021/acsami.9b18997
50 HE Y , XU Y , ZHANG M , et al. Confining ultrafine SnS nanoparticles in hollow multichannel carbon nanofibers for boosting potassium storage properties[J]. Science Bulletin, 2022, 67 (2): 151- 160.
doi: 10.1016/j.scib.2021.09.020
51 SUN L , WANG C , LI H , et al. Crystalline coordination polymer-derived MoS2 quantum dot-doped carbon nanoflakes with ultrafast Li+ transfer[J]. Chemical Communications, 2021, 57 (66): 8151- 8153.
doi: 10.1039/D1CC01601F
52 SHAO Y , YUE J , SUN S , et al. Facile synthesis of FeS2 quantum-dots/functionalized graphene-sheet composites as advanced anode material for sodium-ion batteries[J]. Chinese Journal of Chemistry, 2017, 35 (1): 73- 78.
doi: 10.1002/cjoc.201600637
53 YAN Z , LIU J , WEI H , et al. Embedding FeS nanodots into carbon nanosheets to improve the electrochemical performance of anode in potassium ion batteries[J]. Journal of Colloid and Interface Science, 2021, 593, 408- 416.
doi: 10.1016/j.jcis.2021.03.015
54 LEE S , KIM S , GIM J , et al. Ultra-small ZnS quantum dots embedded in N-doped carbon matrix for high-performance Li-ion battery anode[J]. Composites: Part B, 2022, 231, 109548.
doi: 10.1016/j.compositesb.2021.109548
55 QI Y , YANG Y , HOU Q , et al. Uniform-dispersed ZnS quantum dots loading on graphene as a promising anode for potassium-ion batteries[J]. Chinese Chemical Letters, 2021, 32 (3): 1117- 1120.
doi: 10.1016/j.cclet.2020.08.030
56 ZHANG P , CAO M , FENG Y , et al. Uniformly growing Co9S8 nanoparticles on flexible carbon foam as a free-standing anode for lithium-ion storage devices[J]. Carbon, 2021, 182, 404- 412.
doi: 10.1016/j.carbon.2021.06.032
57 WANG M , PENG A , XU H , et al. Amorphous SnSe quantum dots anchoring on graphene as high performance anodes for battery/capacitor sodium ion storage[J]. Journal of Power Sources, 2020, 469, 228414.
doi: 10.1016/j.jpowsour.2020.228414
58 HUANG Z X , LIU B , KONG D , et al. SnSe2 quantum dot/rGO composite as high performing lithium anode[J]. Energy Storage Materials, 2018, 10, 92- 101.
doi: 10.1016/j.ensm.2017.08.008
59 HUSSAIN N , LI M , TIAN B , et al. Co3Se4 quantum dots as an ultrastable host material for potassium-ion intercalation[J]. Advanled Materials, 2021, 33 (26): 2102164.
doi: 10.1002/adma.202102164
60 SHI S , SUN C , YIN X , et al. FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications[J]. Advanced Functional Materials, 2020, 30 (10): 1909283.
doi: 10.1002/adfm.201909283
61 YAN Z , HUANG Z , ZHOU H , et al. Facile fabrication of MoP nanodots embedded in porous carbon as excellent anode material for potassium-ion batteries[J]. Journal of Energy Chemistry, 2021, 54, 571- 578.
doi: 10.1016/j.jechem.2020.06.037
62 YAN Z , HUANG Z , YAO Y , et al. Monodispersed Ni2P nanodots embedded in N, P co-doped porous carbon as super stable anode material for potassium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 858, 158203.
doi: 10.1016/j.jallcom.2020.158203
63 MA X , JI C , YU X , et al. A covalent heterostructure of metal phosphide quantum dots anchored in N, P co-doped carbon nanocapsules for fast and durable lithium storage[J]. ACS Applied Materials and Interfaces, 2021, 13 (45): 53965- 53973.
doi: 10.1021/acsami.1c16730
64 MURALIDHARAN P , YUN J H , PONRAJ R , et al. Melamine-assisted synthesis of vanadium nitride quantum dots: application for full-cell lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 888, 161522.
doi: 10.1016/j.jallcom.2021.161522
65 ZENG F , LU T , HE W , et al. In-situ carbon encapsulation of ultrafine VN in yolk-shell nanospheres for highly reversible sodium storage[J]. Carbon, 2021, 175, 289- 298.
doi: 10.1016/j.carbon.2021.01.025
66 WU H , YU Q , LAO C Y , et al. Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage[J]. Energy Storage Materials, 2019, 18, 43- 50.
doi: 10.1016/j.ensm.2018.09.025
67 YI H , HUANG Y , SHA Z , et al. Facile synthesis of Mo2N quantum dots embedded N-doped carbon nanosheets composite as advanced anode materials for lithium-ion batteries[J]. Materials Letters, 2020, 276, 128205.
doi: 10.1016/j.matlet.2020.128205
68 ZHENG C , LUO N , HUANG S , et al. Nanocomposite of Mo2N quantum dots@MoO3@nitrogen-doped carbon as a high-performance anode for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (12): 10198- 10206.
69 MIN H , ZHANG X , SHU H , et al. Mo2C quantum dots inlaid in nitrogen-doped carbon nanofibers as free-standing anodes with long-term stability K-ion storage[J]. Journal of Alloys and Compounds, 2021, 888, 161498.
doi: 10.1016/j.jallcom.2021.161498
70 WU H , ZHANG Z , QIN M , et al. Tuning vacancy and size of metallic VCx quantum dots for capacitive potassium-ion batteries[J]. Chemical Engineering Journal, 2021, 404, 126315.
doi: 10.1016/j.cej.2020.126315
71 YANG L , YANG B , CHEN X , et al. Bimetallic alloy SbSn nanodots filled in electrospun N-doped carbon fibers for high performance Na-ion battery anode[J]. Electrochimica Acta, 2021, 389, 138246.
doi: 10.1016/j.electacta.2021.138246
72 ESFANDIARI A , HAGHIGHAT S S , NAZARIAN S M , et al. Defect-rich Ni3Sn4 quantum dots anchored on graphene sheets exhibiting unexpected reversible conversion reactions with exceptional lithium and sodium storage performance[J]. Applied Surface Science, 2020, 526, 146756.
doi: 10.1016/j.apsusc.2020.146756
73 WANG B , XIE Y , LIU T , et al. LiFePO4 quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate lithium ion batteries[J]. Nano Energy, 2017, 42, 363- 372.
doi: 10.1016/j.nanoen.2017.11.040
74 JIN T , LIU Y , LI Y , et al. Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries[J]. Advanced Energy Materials, 2017, 7 (15): 1700087.
doi: 10.1002/aenm.201700087
75 ZHANG Q , ZHANG X , HE W , et al. In situ fabrication of Na3V2(PO4)3 quantum dots in hard carbon nanosheets by using lignocelluloses for sodium ion batteries[J]. Journal of Materials Science & Technology, 2019, 35 (10): 2396- 2403.
76 陶丽华, 蔡燕, 李在均, 等. 石墨烯/CdS量子点复合材料的电化学性能研究[J]. 无机材料学报, 2011, 26 (9): 912- 916.
76 TAO L H , CAI Y , LI Z J , et al. Electrochemical properties of graphene/CdS quantum dot composites[J]. Journal of Inorganic Materials, 2011, 26 (9): 912- 916.
77 ZHAO W , MA X , LI Y , et al. Achieving ultrastable cyclability and pseudocapacitive sodium storage in SnSe quantum-dots sheathed in nitrogen doped carbon nanofibers[J]. Applied Surface Science, 2020, 504, 144455.
doi: 10.1016/j.apsusc.2019.144455
78 LIU Z , HAN K , LI P , et al. Tuning metallic Co0.85Se quantum dots/carbon hollow polyhedrons with tertiary hierarchical structure for high-performance potassium ion batteries[J]. Nanomicro Lett, 2019, 11 (1): 96.
79 王利霞, 张振华, 李雷, 等. Mo2N量子点@N-掺杂石墨烯复合材料的制备及储锂性能[J]. 化工学报, 2020, 71 (12): 5854- 5862.
79 WANG L X , ZHANG Z H , LI L , et al. Preparation and lithium storage properties of Mo2N quantum dots@nitrogen-doped graphene composite[J]. CIESC Journal, 2020, 71 (12): 5854- 5862.
80 LIU Z , ZHANG S , QIU Z , et al. Tin nanodots derived from Sn2+/graphene quantum dot complex as pillars into graphene blocks for ultrafast and ultrastable sodium-ion storage[J]. Small, 2020, 16 (38): 2003557.
doi: 10.1002/smll.202003557
81 HUANG M , XI B , SHI N , et al. Quantum-matter Bi/TiO2 heterostructure embedded in N-doped porous carbon nanosheets for enhanced sodium storage[J]. Small Structures, 2020, 2 (4): 2000085.
82 GUO Q , MA Y , CHEN T , et al. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries[J]. ACS Nano, 2017, 11 (12): 12658- 12667.
doi: 10.1021/acsnano.7b07132
83 HUANG S , WANG M , JIA P , et al. N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage[J]. Energy Storage Materials, 2019, 20, 225- 233.
doi: 10.1016/j.ensm.2018.11.024
84 LIU W , YUAN J , HAO Y , et al. Heterogeneous structured MoSe2-MoO3 quantum dots with enhanced sodium/potassium storage[J]. Journal of Materials Chemistry A, 2020, 8 (44): 23395- 23403.
doi: 10.1039/D0TA08674F
[1] 马锐, 张宇雨, 王菲菲, 刘琪瑶, 李嘉琪, 魏金枝. Ni-BTC/RGO复合材料的制备及其电化学性能[J]. 材料工程, 2022, 50(6): 124-130.
[2] 杨啸峰, 徐雅欣, 黄锦阳, 党莹樱, 鲁金涛, 李文亚. 火电机组锅炉受热面合金烟气腐蚀与应力协同作用失效行为研究进展[J]. 材料工程, 2022, 50(5): 100-111.
[3] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[4] 马海霞, 王太和, 赵玉洁, 王旭, 李嘉辰. MoS2/Ru异质结构的制备及其电催化析氢反应性能[J]. 材料工程, 2022, 50(4): 44-52.
[5] 江维婷, 李翠苹, 姜晓辉, 于良民. Fe/Fe3C/Fe3O4@C磁性微球的制备及吸波性能研究[J]. 材料工程, 2022, 50(11): 81-91.
[6] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[7] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[8] 岳晓岱, 李嘉荣, 刘世忠, 史振学, 王效光, 董建民. 钌和铼对先进单晶高温合金组织稳定性的协同影响[J]. 材料工程, 2021, 49(4): 63-70.
[9] 曾静, 武东政, 庄奕超, 赵金保. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49(2): 10-20.
[10] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[11] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[12] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[13] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[14] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[15] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn