1 College of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, Shandong, China 2 Analytical Testing Center, Shandong University of Technology, Zibo 255000, Shandong, China
As a kind of rechargeable batteries, alkali metal-ion battery is one of the important energy storage devices at present. Due to the advantages of enhanced energy density, high work potential, no "memory effect", small self-discharge, environment-friendly, alkali metal-ion batteries have attracted extensive attention in recent years. Electrode material is one of the most important factors that influence the electrochemical performances of alkali metal-ion batteries. Therefore, the key to the improvement of alkali metal-ion batteries is to seek electrode materials with high specific capacity and stable structures. Quantum dots/carbon composites (QDs/C), integrating the advantages of quantum dot materials and carbon materials have turned out to be outstanding candidates for electrode materials of alkali metal-ion batteries. In this work, a brief introduction of quantum dot materials was given at first, and then the progress of QDs/C, including element QDs/C, compound QDs/C and heterostructure QDs/C in alkali metal-ion batteries, was summarized respectively. The advantages and disadvantages of QDs/C as electrode materials of alkali metal-ion batteries were discussed in the last part.In view of the shortcoming, the future development goal was proposed: (1)Exploring the innovative approach to slove the agglomeration of quantum dots and the relative composites; (2)Researching the structure and property of SEI film to improve the initial coulombic efficiency; (3)Clarifying the reaction mechanism to obtain the better electrochemical performance.
Self-template, in siturecrystallization, self-assembly
967
42.0
124 at 10 A·g-1 after 10000 cycles
SIBs, anode
[81]
CoSx@NSC
Sol-gel
696
94.5
87.5% at 1 A·g-1 after 200 cycles
SIBs, anode
[82]
SnO2@SnS2@NG
Hydrothermal
77.2
510 at 5 A·g-1 after 1000 cycles
LIBs, anode
[83]
MoSe2-MoO3
Carbonization/selenization
63.1
218.5 at 3 A·g-1 after 2000 cycles
SIBs, anode
[84]
Table 3 异质结构量子点/碳复合材料的制备方法和电化学性能
1
YU W J , HE W , WANG C , et al. Confinement of TiO2 quantum dots in graphene nanoribbons for high-performance lithium and sodium ion batteries[J]. Journal of Alloys and Compounds, 2022, 898, 162856.
doi: 10.1016/j.jallcom.2021.162856
2
FERNANDO J F S , ZHANG C , FIRESTEIN K L , et al. ZnO quantum dots anchored in multilayered and flexible amorphous carbon sheets for high performance and stable lithium ion batteries[J]. Journal of Materials Chemistry A, 2019, 7 (14): 8460- 8471.
doi: 10.1039/C8TA12511B
3
LIU J , ZHU M , MU K , et al. Engineering a novel microcapsule of Cu9S5 core and SnS2 quantum dot/carbon nanotube shell as a Li-ion battery anode[J]. Chemical Communications, 2021, 57 (98): 13397- 13400.
doi: 10.1039/D1CC05657C
4
YANG Y , ZHU J , WANG P , et al. In situ implanting fine ZnSe nanoparticles into N-doped porous carbon nanosheets as an exposed highly active and long-life anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 876, 160135.
doi: 10.1016/j.jallcom.2021.160135
5
LI Z , ZHAO H , DU Z , et al. Iron phosphide@N-doped carbon nanosheets with open-framework structure as an ultralong lifespan and outstanding rate performance electrode material for sodium-ion batteries[J]. Journal of Power Sources, 2020, 465, 228253.
doi: 10.1016/j.jpowsour.2020.228253
6
CHENG Y , WANG S , ZHOU L , et al. SnO2 quantum dots: rational design to achieve highly reversible conversion reaction and stable capacities for lithium and sodium storage[J]. Small, 2020, 16 (26): 2000681.
doi: 10.1002/smll.202000681
7
PENG Q , GUO C , QI S , et al. Ultra-small Fe3O4 nanodots encapsulated in layered carbon nanosheets with fast kinetics for lithium/potassium-ion battery anodes[J]. RSC Advances, 2021, 11 (3): 1261- 1270.
doi: 10.1039/D0RA08503K
8
GAO L , WU G , MA J , et al. SnO2 quantum dots@graphene framework as a high-performance flexible anode electrode for lithium-ion batteries[J]. ACS Applied Materials and Interfaces, 2020, 12 (11): 12982- 12989.
doi: 10.1021/acsami.9b22679
9
WU M , CHEN H , LV L P , et al. Graphene quantum dots modification of yolk-shell Co3O4@CuO microspheres for boosted lithium storage performance[J]. Chemical Engineering Journal, 2019, 373, 985- 994.
doi: 10.1016/j.cej.2019.05.100
10
GUO J , GAO F , LI D , et al. Novel strategy of constructing hollow Ga2O3@N-CQDs as a self-healing anode material for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (36): 13692- 13700.
11
LUO F , FENG X , ZENG L , et al. In situ simultaneous encapsulation of defective MoS2 nanolayers and sulfur nanodots into SPAN fibers for high rate sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 404, 126430.
doi: 10.1016/j.cej.2020.126430
12
LU D , YUAN C , YU M , et al. Nanoporous composites of CoOx quantum dots and ZIF-derived carbon as high-performance anodes for lithium-ion batteries[J]. ACS Omega, 2020, 5 (34): 21488- 21496.
doi: 10.1021/acsomega.0c02037
WANG C Y , ZHANG A B , CHANG Z H , et al. Progress in structure design and preparation of porous electrodes for lithium ion batteries[J]. Journal of Materials Engineering, 2022, 50 (1): 67- 79.
14
CHEN W , ZHANG X , PENG Y , et al. One-pot scalable synthesis of pure phase Ni3S4 quantum dots as a versatile electrode for high performance hybrid supercapacitors and lithium ion batteries[J]. Journal of Power Sources, 2019, 438, 227004.
doi: 10.1016/j.jpowsour.2019.227004
15
ZHAO X , WU Y , WANG Y , et al. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes[J]. Nano Research, 2020, 13 (4): 1044- 1052.
doi: 10.1007/s12274-020-2741-9
16
HAN K , ZHAO W , YU Q , et al. Marcasite-FeS2@carbon nanodots anchored on 3D cell-like graphenic matrix for high-rate and ultrastable potassium ion storage[J]. Journal of Power Sources, 2020, 469, 228429.
doi: 10.1016/j.jpowsour.2020.228429
17
KUMAR R , SAHOO S , JOANNI E , et al. Heteroatom doped graphene engineering for energy storage and conversion[J]. Materials Today, 2020, 39, 47- 65.
doi: 10.1016/j.mattod.2020.04.010
18
ELSAYED M H , JAYAKUMAR J , ABDELLAH M , et al. Visible-light-driven hydrogen evolution using nitrogen-doped carbon quantum dot-implanted polymer dots as metal-free photocatalysts[J]. Applied Catalysis B, 2021, 283, 119659.
doi: 10.1016/j.apcatb.2020.119659
19
LIN X , LIU C , WANG J , et al. Graphitic carbon nitride quantum dots and nitrogen-doped carbon quantum dots co-decorated with BiVO4 microspheres: a ternary heterostructure photocatalyst for water purification[J]. Separation and Purification Technology, 2019, 226, 117- 127.
doi: 10.1016/j.seppur.2019.05.093
20
LI S , SU W , WU H , et al. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids[J]. Nature Biomedical Engineering, 2020, 4 (7): 704- 716.
doi: 10.1038/s41551-020-0540-y
21
GAO Z , XU B , MA M , et al. Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption[J]. Composites: Part B, 2019, 179, 107417.
doi: 10.1016/j.compositesb.2019.107417
22
LI M , CHEN T , GOODING J J , et al. Review of carbon and graphene quantum dots for sensing[J]. ACS Sensors, 2019, 4 (7): 1732- 1748.
doi: 10.1021/acssensors.9b00514
23
XIE J , LU Y C . A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11 (1): 2499.
doi: 10.1038/s41467-020-16259-9
WU Y F , CHONG S K , LIU Y N , et al. Research progress on carbon nano-materials to construct Li-ion and Li-S batteries of high performance[J]. Journal of Materials Engineering, 2020, 48 (4): 25- 35.
25
WANG H , AN D , TIAN P , et al. Incorporating quantum-sized boron dots into 3D cross-linked rGO skeleton to enable the activity of boron anode for favorable lithium storage[J]. Chemical Engineering Journal, 2021, 425, 130659.
doi: 10.1016/j.cej.2021.130659
26
WEI Y , YU H , LI H , et al. Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes[J]. Materials Research Bulletin, 2013, 48 (10): 4072- 4077.
doi: 10.1016/j.materresbull.2013.06.030
27
WANG Y , LUO S , CHEN M , et al. Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high-performance Li-ion battery[J]. Advanced Functional Materials, 2020, 30 (16): 2000373.
doi: 10.1002/adfm.202000373
28
GUO Y , FENG Y , LI H , et al. Carbon quantum dots in hard carbon: an approach to achieving PIB anodes with high potassium adsorption[J]. Carbon, 2022, 189, 142- 151.
doi: 10.1016/j.carbon.2021.12.038
29
ZHANG E , JIA X , WANG B , et al. Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode[J]. Advanced Science, 2020, 7 (15): 2000470.
doi: 10.1002/advs.202000470
30
CHEN B , ZU L , LIU Y , et al. Space-confined atomic clusters catalyze superassembly of silicon nanodots within carbon frameworks for use in lithium-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59 (8): 3137- 3142.
doi: 10.1002/anie.201915502
31
ZHANG G , ZHU J , ZENG W , et al. Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries[J]. Nano Energy, 2014, 9, 61- 70.
doi: 10.1016/j.nanoen.2014.06.030
32
LUO L , SONG J , SONG L , et al. Flexible conductive anodes based on 3D hierarchical Sn/NS-CNFs@rGO network for sodium-ion batteries[J]. Nano-Micro Letters, 2019, 11 (1): 63.
doi: 10.1007/s40820-019-0294-9
33
GONG D , WANG B , ZHU J , et al. An iodine quantum dots based rechargeable sodium-iodine battery[J]. Advanced Energy Materials, 2017, 7 (3): 1601885.
doi: 10.1002/aenm.201601885
34
ZHU C , CHAO D , SUN J , et al. Enhanced lithium storage performance of CuO nanowires by coating of graphene quantum dots[J]. Advanced Materials Interfaces, 2015, 2 (2): 1400499.
doi: 10.1002/admi.201400499
35
DARYABARI S , MANSOURI S , BEHESHTIAN J , et al. A computational study on the novel defects of graphene quantum dot as a promising anode material for sodium ion battery[J]. Materials Chemistry and Physics, 2021, 265, 124484.
doi: 10.1016/j.matchemphys.2021.124484
36
LI Y , WU F , JIN X , et al. Preparation and electrochemical properties of graphene quantum dots/biomass activated carbon electrodes[J]. Inorganic Chemistry Communications, 2020, 112, 107718.
doi: 10.1016/j.inoche.2019.107718
37
CHEN Y , ZOU Y , SHEN X , et al. Ge nanoparticles uniformly immobilized on 3D interconnected porous graphene frameworks as anodes for high-performance lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 69, 161- 173.
doi: 10.1016/j.jechem.2021.12.051
38
ZHANG Y , YAN D , LIU Z , et al. A SnOx quantum dots embedded carbon nanocage network with ultrahigh Li storage capacity[J]. ACS Nano, 2021, 15 (4): 7021- 7031.
doi: 10.1021/acsnano.1c00088
39
QIU T , YANG L , XIANG Y , et al. Heterogeneous interface design for enhanced sodium storage: Sb quantum dots confined by functional carbon[J]. Small Methods, 2021, 5 (7): 2100188.
doi: 10.1002/smtd.202100188
40
LUO B , WANG B , LI X , et al. Graphene-confined Sn nanosheets with enhanced lithium storage capability[J]. Advanced Materials, 2012, 24 (26): 3538- 3543.
doi: 10.1002/adma.201201173
41
HUANG S , YANG L , GAO M , et al. Well-dispersed MnO-quantum-dots/N-doped carbon layer anchored on carbon nanotube as free-standing anode for high-performance Li-ion batteries[J]. Electrochimica Acta, 2019, 319, 302- 311.
doi: 10.1016/j.electacta.2019.06.155
42
LI H , JIANG L , FENG Q , et al. Ultra-fast transfer and high storage of Li+/Na+ in MnO quantum dots@carbon hetero-nanotubes: appropriate quantum dots to improve the rate[J]. Energy Storage Materials, 2019, 17, 157- 166.
doi: 10.1016/j.ensm.2018.07.021
43
LI B , BAO S , TAN Q , et al. Engineering tin dioxide quantum dots in a hierarchical graphite and graphene oxide framework for lithium-ion storage[J]. Journal of Colloid and Interface Scicnce, 2021, 600, 649- 659.
doi: 10.1016/j.jcis.2021.05.070
44
PARK Y J , LEE K S , SHIM J , et al. Suppression of volume expansion by graphene encapsulated Co3O4 quantum dots for boosting lithium storage[J]. Journal of Industrial and Engineering Chemistry, 2021, 95, 333- 339.
doi: 10.1016/j.jiec.2021.01.004
45
WANG X , LIU Y , WANG Y , et al. CuO quantum dots embedded in carbon nanofibers as binder-free anode for sodium ion batteries with enhanced properties[J]. Small, 2016, 12 (35): 4865- 4872.
doi: 10.1002/smll.201601474
46
YIN J , YU J , SHI X , et al. TiO2 quantum dots confined in 3D carbon framework for outstanding surface lithium storage with improved kinetics[J]. Journal of Colloid and Interface Science, 2021, 582, 874- 882.
doi: 10.1016/j.jcis.2020.08.076
47
MA M , CAO L , LI J , et al. Tailoring mulberry-like Fe2O3 architecture assembled by quantum dots on rGO to enable high pseudocapacitance and controllable solid electrolyte interphase[J]. Chemical Engineering Journal, 2020, 388, 124119.
doi: 10.1016/j.cej.2020.124119
48
HAN C , YAN M , MAI L , et al. V2O5 quantum dots/graphene hybrid nanocomposite with stable cyclability for advanced lithium batteries[J]. Nano Energy, 2013, 2 (5): 916- 922.
doi: 10.1016/j.nanoen.2013.03.012
49
VEERASUBRAMANI G K , PARK M S , CHOI J Y , et al. Ultrasmall SnS quantum dots anchored onto nitrogen-enriched carbon nanospheres as an advanced anode material for sodium-ion batteries[J]. ACS Applied Materials and Interfaces, 2020, 12 (6): 7114- 7124.
doi: 10.1021/acsami.9b18997
50
HE Y , XU Y , ZHANG M , et al. Confining ultrafine SnS nanoparticles in hollow multichannel carbon nanofibers for boosting potassium storage properties[J]. Science Bulletin, 2022, 67 (2): 151- 160.
doi: 10.1016/j.scib.2021.09.020
51
SUN L , WANG C , LI H , et al. Crystalline coordination polymer-derived MoS2 quantum dot-doped carbon nanoflakes with ultrafast Li+ transfer[J]. Chemical Communications, 2021, 57 (66): 8151- 8153.
doi: 10.1039/D1CC01601F
52
SHAO Y , YUE J , SUN S , et al. Facile synthesis of FeS2 quantum-dots/functionalized graphene-sheet composites as advanced anode material for sodium-ion batteries[J]. Chinese Journal of Chemistry, 2017, 35 (1): 73- 78.
doi: 10.1002/cjoc.201600637
53
YAN Z , LIU J , WEI H , et al. Embedding FeS nanodots into carbon nanosheets to improve the electrochemical performance of anode in potassium ion batteries[J]. Journal of Colloid and Interface Science, 2021, 593, 408- 416.
doi: 10.1016/j.jcis.2021.03.015
54
LEE S , KIM S , GIM J , et al. Ultra-small ZnS quantum dots embedded in N-doped carbon matrix for high-performance Li-ion battery anode[J]. Composites: Part B, 2022, 231, 109548.
doi: 10.1016/j.compositesb.2021.109548
55
QI Y , YANG Y , HOU Q , et al. Uniform-dispersed ZnS quantum dots loading on graphene as a promising anode for potassium-ion batteries[J]. Chinese Chemical Letters, 2021, 32 (3): 1117- 1120.
doi: 10.1016/j.cclet.2020.08.030
56
ZHANG P , CAO M , FENG Y , et al. Uniformly growing Co9S8 nanoparticles on flexible carbon foam as a free-standing anode for lithium-ion storage devices[J]. Carbon, 2021, 182, 404- 412.
doi: 10.1016/j.carbon.2021.06.032
57
WANG M , PENG A , XU H , et al. Amorphous SnSe quantum dots anchoring on graphene as high performance anodes for battery/capacitor sodium ion storage[J]. Journal of Power Sources, 2020, 469, 228414.
doi: 10.1016/j.jpowsour.2020.228414
58
HUANG Z X , LIU B , KONG D , et al. SnSe2 quantum dot/rGO composite as high performing lithium anode[J]. Energy Storage Materials, 2018, 10, 92- 101.
doi: 10.1016/j.ensm.2017.08.008
59
HUSSAIN N , LI M , TIAN B , et al. Co3Se4 quantum dots as an ultrastable host material for potassium-ion intercalation[J]. Advanled Materials, 2021, 33 (26): 2102164.
doi: 10.1002/adma.202102164
60
SHI S , SUN C , YIN X , et al. FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications[J]. Advanced Functional Materials, 2020, 30 (10): 1909283.
doi: 10.1002/adfm.201909283
61
YAN Z , HUANG Z , ZHOU H , et al. Facile fabrication of MoP nanodots embedded in porous carbon as excellent anode material for potassium-ion batteries[J]. Journal of Energy Chemistry, 2021, 54, 571- 578.
doi: 10.1016/j.jechem.2020.06.037
62
YAN Z , HUANG Z , YAO Y , et al. Monodispersed Ni2P nanodots embedded in N, P co-doped porous carbon as super stable anode material for potassium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 858, 158203.
doi: 10.1016/j.jallcom.2020.158203
63
MA X , JI C , YU X , et al. A covalent heterostructure of metal phosphide quantum dots anchored in N, P co-doped carbon nanocapsules for fast and durable lithium storage[J]. ACS Applied Materials and Interfaces, 2021, 13 (45): 53965- 53973.
doi: 10.1021/acsami.1c16730
64
MURALIDHARAN P , YUN J H , PONRAJ R , et al. Melamine-assisted synthesis of vanadium nitride quantum dots: application for full-cell lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 888, 161522.
doi: 10.1016/j.jallcom.2021.161522
65
ZENG F , LU T , HE W , et al. In-situ carbon encapsulation of ultrafine VN in yolk-shell nanospheres for highly reversible sodium storage[J]. Carbon, 2021, 175, 289- 298.
doi: 10.1016/j.carbon.2021.01.025
66
WU H , YU Q , LAO C Y , et al. Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage[J]. Energy Storage Materials, 2019, 18, 43- 50.
doi: 10.1016/j.ensm.2018.09.025
67
YI H , HUANG Y , SHA Z , et al. Facile synthesis of Mo2N quantum dots embedded N-doped carbon nanosheets composite as advanced anode materials for lithium-ion batteries[J]. Materials Letters, 2020, 276, 128205.
doi: 10.1016/j.matlet.2020.128205
68
ZHENG C , LUO N , HUANG S , et al. Nanocomposite of Mo2N quantum dots@MoO3@nitrogen-doped carbon as a high-performance anode for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (12): 10198- 10206.
69
MIN H , ZHANG X , SHU H , et al. Mo2C quantum dots inlaid in nitrogen-doped carbon nanofibers as free-standing anodes with long-term stability K-ion storage[J]. Journal of Alloys and Compounds, 2021, 888, 161498.
doi: 10.1016/j.jallcom.2021.161498
70
WU H , ZHANG Z , QIN M , et al. Tuning vacancy and size of metallic VCx quantum dots for capacitive potassium-ion batteries[J]. Chemical Engineering Journal, 2021, 404, 126315.
doi: 10.1016/j.cej.2020.126315
71
YANG L , YANG B , CHEN X , et al. Bimetallic alloy SbSn nanodots filled in electrospun N-doped carbon fibers for high performance Na-ion battery anode[J]. Electrochimica Acta, 2021, 389, 138246.
doi: 10.1016/j.electacta.2021.138246
72
ESFANDIARI A , HAGHIGHAT S S , NAZARIAN S M , et al. Defect-rich Ni3Sn4 quantum dots anchored on graphene sheets exhibiting unexpected reversible conversion reactions with exceptional lithium and sodium storage performance[J]. Applied Surface Science, 2020, 526, 146756.
doi: 10.1016/j.apsusc.2020.146756
73
WANG B , XIE Y , LIU T , et al. LiFePO4 quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate lithium ion batteries[J]. Nano Energy, 2017, 42, 363- 372.
doi: 10.1016/j.nanoen.2017.11.040
74
JIN T , LIU Y , LI Y , et al. Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries[J]. Advanced Energy Materials, 2017, 7 (15): 1700087.
doi: 10.1002/aenm.201700087
75
ZHANG Q , ZHANG X , HE W , et al. In situ fabrication of Na3V2(PO4)3 quantum dots in hard carbon nanosheets by using lignocelluloses for sodium ion batteries[J]. Journal of Materials Science & Technology, 2019, 35 (10): 2396- 2403.
TAO L H , CAI Y , LI Z J , et al. Electrochemical properties of graphene/CdS quantum dot composites[J]. Journal of Inorganic Materials, 2011, 26 (9): 912- 916.
77
ZHAO W , MA X , LI Y , et al. Achieving ultrastable cyclability and pseudocapacitive sodium storage in SnSe quantum-dots sheathed in nitrogen doped carbon nanofibers[J]. Applied Surface Science, 2020, 504, 144455.
doi: 10.1016/j.apsusc.2019.144455
78
LIU Z , HAN K , LI P , et al. Tuning metallic Co0.85Se quantum dots/carbon hollow polyhedrons with tertiary hierarchical structure for high-performance potassium ion batteries[J]. Nanomicro Lett, 2019, 11 (1): 96.
WANG L X , ZHANG Z H , LI L , et al. Preparation and lithium storage properties of Mo2N quantum dots@nitrogen-doped graphene composite[J]. CIESC Journal, 2020, 71 (12): 5854- 5862.
80
LIU Z , ZHANG S , QIU Z , et al. Tin nanodots derived from Sn2+/graphene quantum dot complex as pillars into graphene blocks for ultrafast and ultrastable sodium-ion storage[J]. Small, 2020, 16 (38): 2003557.
doi: 10.1002/smll.202003557
81
HUANG M , XI B , SHI N , et al. Quantum-matter Bi/TiO2 heterostructure embedded in N-doped porous carbon nanosheets for enhanced sodium storage[J]. Small Structures, 2020, 2 (4): 2000085.
82
GUO Q , MA Y , CHEN T , et al. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries[J]. ACS Nano, 2017, 11 (12): 12658- 12667.
doi: 10.1021/acsnano.7b07132
83
HUANG S , WANG M , JIA P , et al. N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage[J]. Energy Storage Materials, 2019, 20, 225- 233.
doi: 10.1016/j.ensm.2018.11.024
84
LIU W , YUAN J , HAO Y , et al. Heterogeneous structured MoSe2-MoO3 quantum dots with enhanced sodium/potassium storage[J]. Journal of Materials Chemistry A, 2020, 8 (44): 23395- 23403.
doi: 10.1039/D0TA08674F