Please wait a minute...
 
2222材料工程  2023, Vol. 51 Issue (1): 122-129    DOI: 10.11868/j.issn.1001-4381.2022.000077
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
U75V重轨钢弯曲疲劳裂纹扩展行为
岑耀东, 郭曜珲, 马潇, 陈林(), 包喜荣
内蒙古科技大学 材料与冶金学院, 内蒙古 包头 014010
Bending fatigue crack propagation behavior of U75V heavy rail steel
Yaodong CEN, Yaohui GUO, Xiao MA, Lin CHEN(), Xirong BAO
School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
全文: PDF(25388 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为明确珠光体钢轨的疲劳裂纹扩展行为,测定U75V重轨钢轧态和热处理态两种条件下的三点弯曲疲劳裂纹扩展速率,采用光学显微镜、扫描电镜、EBSD对钢轨的微观组织、片层、断口形貌及裂纹扩展轨迹进行观察。结果表明:轧态和热处理态钢轨的疲劳辉纹平均间距分别为253,215 nm,轧态钢轨的疲劳断口呈现解理台阶与河流花样形貌,且河流花样趋于合并,而热处理态钢轨的疲劳断口呈现大量的解理台阶及较多的微裂纹和撕裂棱,河流花样以支流为主;热处理态钢轨的疲劳裂纹扩展速率远低于轧态,到达裂纹失稳阶段也较滞后;轧态和热处理态钢轨的疲劳裂纹扩展都是以穿晶断裂为主的穿晶断裂和沿晶断裂混合扩展方式进行,轧态和热处理态钢轨的珠光体片层间距分别为272,148 nm,其中热处理态钢轨的珠光体片层细密且方向多样,存在显著的珠光体团簇,裂纹扩展轨迹中出现较多的分支裂纹和裂纹桥接现象,对扩展起到阻碍作用,是热处理态钢轨抗疲劳裂纹扩展能力优于轧态的重要原因。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岑耀东
郭曜珲
马潇
陈林
包喜荣
关键词 重轨钢疲劳断裂裂纹扩展显微组织    
Abstract

In order to clarify the fatigue crack propagation behavior of pearlitic rail, the three-point bending fatigue crack propagation rate of U75V heavy rail steel in rolling state and heat treatment state was measured. The microstructure, lamella, fracture morphology and fatigue crack propagation trajectory of rail were observed by optical microscope, scanning electron microscope and EBSD. The results show that the average distance between fatigue striation of rolled and heat-treated rails is 252.5 nm and 215.4 nm, the fracture surface of rolled rail presents cleavage steps and river patterns, and the river patterns tend to merge.However, the fatigue fracture surface of the heat-treated rail presents a large number of cleavage steps, more microcracks and tear edges, and the river pattern is dominated by tributaries.The fatigue crack growth rate of heat-treated rail is much lower than that of rolled sample, and it is also slow to reach the stage of crack instability.The fatigue crack propagation mode of rolled and heat-treated rail is the mixed propagation mode of transgranular fracture and intergranular fracture dominated by transgranular fracture, the pearlite lamellae spacing of rolled and heat-treated rails is 272.2 nm and 148.4 nm respectively. The pearlite lamellae of heat-treated rails is fine and has various directions, while there are significant pearlite clusters in the heat-treated rail.There are many branch cracks and crack bridges in the crack growth path, which hinders the crack propagation in the heat-treated U75V heavy rail steel, which is an important reason why the fatigue crack propagation rate of the heat-treated rail is lower than that of the rolled rail.

Key wordsheavy rail steel    fatigue fracture    crack propagation    microstructure
收稿日期: 2022-01-25      出版日期: 2023-01-16
中图分类号:  TG111  
基金资助:国家自然科学基金(51361021);内蒙古自治区科技重大专项(ZDZX2018024);内蒙古科技大学创新基金(2019QDL-B06);内蒙古高等学校科学研究项目(NJZY20089)
通讯作者: 陈林     E-mail: chenlin39805@163.com
作者简介: 陈林(1963—),男,教授,硕士,研究方向为先进金属材料疲劳寿命及安全性评估,联系地址:内蒙古自治区包头市昆都仑区阿尔丁大街7号内蒙古科技大学材冶学院(014010),E-mail: chenlin39805@163.com
引用本文:   
岑耀东, 郭曜珲, 马潇, 陈林, 包喜荣. U75V重轨钢弯曲疲劳裂纹扩展行为[J]. 材料工程, 2023, 51(1): 122-129.
Yaodong CEN, Yaohui GUO, Xiao MA, Lin CHEN, Xirong BAO. Bending fatigue crack propagation behavior of U75V heavy rail steel. Journal of Materials Engineering, 2023, 51(1): 122-129.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2022.000077      或      http://jme.biam.ac.cn/CN/Y2023/V51/I1/122
C Si Mn P S V Fe
0.75 0.50-0.80 0.75-1.05 ≤0.030 ≤0.030 0.04-0.12 Bal
Table 1  U75V重轨钢的化学成分(质量分数/%)
Fig.1  三点弯曲试样
(a)取样位置;(b)加载示意图;(c)试样尺寸
Fig.2  U75V重轨钢的疲劳断口(1)和表面轮廓图(2)
(a)轧态;(b)热处理态
Process conditionArea Ⅰ Area Ⅱ Area Ⅲ Total N/104 cycle
a/mm N/104 cycle a/mm N/104 cycle a/mm N/104 cycle
Rolled 2.72 24.51 3.62 13.52 5.08 4.52 42.55
Heat-treated 2.39 29.01 4.02 22.52 3.11 5.02 56.55
Table 2  U75V重轨钢疲劳裂纹扩展数据
Fig.3  U75V重轨钢的疲劳断口形貌
(a)轧态;(b)热处理态
Fig.4  U75V重轨钢的a-N曲线(1)和da/dN-ΔK曲线(2)
(a)轧态;(b)热处理态
Process condition C/10-9 mda/dN/(mm·cycle-1)
ΔK= 10 MPa·m1/2 ΔK= 13.5 MPa·m1/2
Rolled 8.33 3.229 13.16 36.36
Heat-treated 38.63 2.463 10.28 22.73
Table 3  U75V重轨钢的疲劳裂纹扩展常数Cm值及疲劳裂纹扩展速率
Fig.5  轧态(a)、热处理态(b)U75V重轨钢显微组织及疲劳裂纹
(1)金相显微组织;(2)珠光体结构;(3)珠光体片层;(4)裂纹扩展轨迹
Fig.6  U75V重轨钢轧态(a)和热处理态(b)疲劳裂纹轨迹的EBSD像
(1)SEM图;(2)取向分布图;(3)大小角晶界分布
1 朱海燕, 袁遥, 肖乾, 等. 钢轨波磨研究进展[J]. 交通运输工程学报, 2021, 21 (3): 110- 133.
doi: 10.19818/j.cnki.1671-1637.2021.03.006
1 ZHU H Y , YUAN Y , XIAO Q , et al. Research progress on rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2021, 21 (3): 110- 133.
doi: 10.19818/j.cnki.1671-1637.2021.03.006
2 周琰, 彭金方, 赵磊, 等. 不同滑滚比下轮轨材料损伤行为[J]. 材料工程, 2016, 44 (2): 75- 80.
2 ZHOU Y , PENG J F , ZHAO L , et al. Damage behavior of wheel/rail materials under different slip rates[J]. Journal of Materials Engineering, 2016, 44 (2): 75- 80.
3 MA L , GUO J , LIU Q Y , et al. Fatigue crack growth and damage characteristics of high-speed rail at low ambient temperature[J]. Engineering Failure Analysis, 2017, 82, 802- 815.
doi: 10.1016/j.engfailanal.2017.07.026
4 杨智勇, 臧家俊, 方丹琳, 等. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50 (7): 165- 175.
4 YANG Z Y , ZANG J J , FANG D L , et al. Thermal fatigue crack propagation mechanism of SiCp/A356 composites for urban rail train brake disc[J]. Journal of Materials Engineering, 2022, 50 (7): 165- 175.
5 CEN Y D , CHEN L , JI C J , et al. Fatigue crack growth behavior of eutectoid steel rail[J]. Journal of Wuhan University of Technology(Materials Science), 2022, 37 (3): 507- 512.
doi: 10.1007/s11595-022-2558-3
6 陈林, 戴宇恒, 崔健伟, 等. 微合金化钢轨淬火工艺的优化及其疲劳裂纹扩展行为研究[J]. 机械工程学报, 2022, 58 (14): 233- 240.
6 CHEN L , DAI Y H , CUI J W , et al. Optimization of quenching process and fatigue crack growth behavior of microalloyed rail[J]. Journal of Mechanical Engineering, 2022, 58 (14): 233- 240.
7 CHEN L , CHEN K Y , CHANG G , et al. Effects of applied stress on isothermal phase transformation of austenite to pearlite in heavy rail steels: an experimental and modeling study[J]. Meta-llography Microstructure and Analysis, 2016, 5 (5): 402- 410.
doi: 10.1007/s13632-016-0304-y
8 KRÓLICKA A , LESIUK G , RADWAŃSKI K , et al. Comparison of fatigue crack growth rate: pearlitic rail versus bainitic rail[J]. International Journal of Fatigue, 2021, 149, 1- 15.
9 BONNIOT T , DOQUE V , MAI S H . Mixed mode Ⅱ and Ⅲ fatigue crack growth in a rail steel[J]. International Journal of Fatigue, 2018, 115, 42- 52.
doi: 10.1016/j.ijfatigue.2018.01.010
10 MASOUDI N R , SHARIATI M , FARHANGDOOST K . Prediction of fatigue crack propagation and fractography of rail steel[J]. Theoretical and Applied Fracture Mechanics, 2019, 101, 320- 331.
doi: 10.1016/j.tafmec.2019.03.016
11 MAYA-JOHNSON S , FELIPE S J , TORO A . Fatigue crack growth rate of two pearlitic rail steels[J]. Engineering Fracture Mechanics, 2015, 138, 63- 72.
doi: 10.1016/j.engfracmech.2015.03.023
12 MAYA-JOHNSON S , FELIPE S J , TORO A . Dry and lubrica-ted wear of rail steel under rolling contact fatigue-wear mechanisms and crack growth[J]. Wear, 2017, 380, 240- 250.
13 CEN Y D , CHEN L , DONG R , et al. Effect of quenching rate on fatigue crack growth of hypereutectoid rail steel[J]. Journal of Materials Science, 2020, 55 (30): 15033- 15042.
doi: 10.1007/s10853-020-05087-3
14 岑耀东, 陈林, 董瑞, 等. 自回火对重轨钢疲劳裂纹扩展行为的影响[J]. 材料导报, 2021, 35 (12): 140- 144.
14 CEN Y D , CHEN L , DONG R , et al. Effect of self-tempering on fatigue crack growth of heavy rail steel[J]. Materials Reports, 2021, 35 (12): 140- 144.
15 NEJAD R M , LIU Z , MA W , et al. Fatigue reliability assessment of a pearlitic grade 900A rail steel subjected to multiple cracks[J]. Engineering Failure Analysis, 2021, 128, 1- 15.
16 李闯. U75V钢轨在线热处理工艺研究[J]. 金属热处理, 2018, 43 (1): 152- 156.
16 LI C . Study on on-line heat treatment process of U75V rail[J]. Heat Treatment of Metals, 2018, 43 (1): 152- 156.
17 LAN Y Z , ZHAO G , XU Y W , et al. Effects of quenching temperature and cooling rate on the microstructure and mechanical properties of U75V rail steel[J]. Metallography Microstructure and Analysis, 2019, 8 (2): 249- 255.
18 KANG H , ANG Z H , LI Y Y , et al. Relationship between Rockwell hardness and pearlite lamellar spacing of hardened layer under different cooling rates for U75V 60 kg·m-1 heavy rail[J]. Materials Science & Engineering Technology, 2021, 52 (4): 460- 467.
19 吕斌, 丁振宇, 高增梁. 不同应力比下U75V轨道钢疲劳裂纹扩展行为研究[J]. 中国机械工程, 2014, 25 (24): 3373- 3377.
19 LV B , DING Z Y , GAO Z L . Study on fatigue crack propagation behavior of U75V track steel under different stress ratios[J]. China Mechanical Engineering, 2014, 25 (24): 3373- 3377.
20 HUA J , PAN J Z , LIU J P , et al. Study on microstructure evolution and property change of U75V rail steel under rolling-sliding conditions[J]. Journal of Materials Engineering and Perfor-mance, 2021, 30 (11): 8157- 8168.
21 CEN Y D , CHEN L , CHANG G , et al. Transformation characteristics and microstructure of rail under low stress during continuous cooling[J]. Journal of Wuhan University of Technology(Materials Science), 2021, 36 (2): 269- 279.
22 陈林, 王慧军, 郭飞翔. 淬火微观组织对重轨钢疲劳裂纹扩展速率的影响[J]. 材料导报, 2017, 31 (14): 109- 112.
22 CHEN L , WANG H J , GUO F X . Effect of quenching microstructure on fatigue crack growth rate of heavy rail steel[J]. Materials Reports, 2017, 31 (14): 109- 112.
23 王慧军, 陈林, 郭飞翔, 等. 残余应力对U75V重轨钢疲劳裂纹扩展速率的影响[J]. 金属热处理, 2017, 42 (6): 23- 27.
23 WANG H J , CHEN L , GUO F X , et al. Effect of residual stress on fatigue crack growth rate of U75V heavy rail steel[J]. Heat Treatment of Metals, 2017, 42 (6): 23- 27.
[1] 常海, 赵聪铭, 王翠菊. 挤压复合AZ91-(SiCP/AZ91)复合板材显微组织和力学性能[J]. 材料工程, 2023, 51(1): 16-25.
[2] 王恩茂, 米振莉, 卫志超, 侯晓英, 钟勇. Q&P980镀锌高强钢电阻点焊工艺及液态金属脆化裂纹分布[J]. 材料工程, 2023, 51(1): 85-94.
[3] 程昊, 周炼刚, 刘健, 王宇宁, 仝凌云, 都东. 热输入对Inconel 617镍基高温合金激光焊接接头显微组织与力学性能的影响[J]. 材料工程, 2023, 51(1): 113-121.
[4] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[5] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[6] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[7] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[8] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[9] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[10] 邢宇轩, 郭英奎, 陈磊, 赵壮志, 王玉金. 气压浸渗法制备ZrC-W-Cu复合材料的显微组织与力学性能[J]. 材料工程, 2021, 49(7): 124-132.
[11] 杨晓琨, 熊柏青, 李锡武, 闫丽珍, 李志辉, 张永安, 李亚楠, 温凯. Li含量对Al-Mg-Si合金时效析出行为的影响[J]. 材料工程, 2021, 49(6): 100-108.
[12] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.
[13] 甘致聪, 王硕, 山圣峰, 张兵, 贾元智, 马明臻. 微量硼对Ti-Fe-Cu-Sn-Nb合金力学性能的影响[J]. 材料工程, 2021, 49(11): 156-162.
[14] 蔡颖军, 王刚, 檀财旺, 王秒, 赵禹. AgCu/泡沫Cu/AgCu复合钎料对ZrB2-SiC/Inconel 600合金钎焊接头组织与性能的影响[J]. 材料工程, 2021, 49(10): 72-81.
[15] 吴桢, 陆政, 刘闪光, 罗传彪. 微量Ag对ZL114A铝合金组织和力学性能的影响[J]. 材料工程, 2021, 49(1): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn