Please wait a minute...
 
材料工程  2003, Vol. 0 Issue (8): 28-32    
  测试技术 本期目录 | 过刊浏览 | 高级检索 |
NiTi形状记忆合金的性能测试与表征
胡自力, 熊克, 王鑫伟
南京航空航天大学智能材料与结构航空科技重点实验室, 南京, 210016
Property Evaluation of NiTi Shape Memory Alloy
HU Zi-li, XIONG-Ke, WANG Xin-wei
The Aeronautical Science Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(239 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 从NiTi形状记忆合金(Shape MemoryAlloy,SMA)性能评价和智能结构研究的角度出发,分析了SMA的应力、应变、温度、电阻以及相变之间的关系.通过分阶段和不同变量组合,对SMA的力学、热学和电学特性进行了实验研究.建立了拉伸状态下形状各异的应力-应变曲线通用物理模型,并进行了数值模拟.结果表明:SMA在马氏体相变,特别是R相变时出现一系列物理、力学性质的异常变化,其本构关系呈现高度非线性;数值模拟结果与实验结果较好地吻合;采用应力、应变、电阻、温度四坐标同步测量是对SMA性能评价的重要方法和有效手段.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡自力
熊克
王鑫伟
关键词 形状记忆合金性能评价物理模型同步测量数值模拟    
Abstract:The important relationships among stress, strain, temperature, electrical resistance and phase transformation of NiTi shape memory alloy (SMA) was synthetically tested and analyzed by various combinations of parameters. A physical model was established to describe the experimental stressstrain curves of SMA, and numerical simulations were performed. Several testing methods were proposed for the need of material evaluations and smart structure developments. Experimental results show that a series of unusual changes on physical and mechanical properties of SMA occur when martensitic, especially R(rhombohedral), phase transformation emerge, and that the constitutive relationship of SMA is highly non-linear. Numerical results are in good agreement with experimental dataIt is an important and effective method to measure stress, strain, electrical resistance and temperature synthetically for studying properties and structural variations of SMA.
Key wordsshape memorg alloy    property evaluation    physical model    synthetical measurement    numerical simulation
收稿日期: 2003-01-15      出版日期: 2003-08-20
1:  TB381  
基金资助:航空科学基金(01G52041);国家自然科学基金(10072026)资助项目
作者简介: 胡自力(1964- ),男,副研究员,目前从事智能材料结构和飞机结构强度研究工作,联系地址:江苏省南京航空航天大学1012信箱(210016).
引用本文:   
胡自力, 熊克, 王鑫伟. NiTi形状记忆合金的性能测试与表征[J]. 材料工程, 2003, 0(8): 28-32.
HU Zi-li, XIONG-Ke, WANG Xin-wei. Property Evaluation of NiTi Shape Memory Alloy. Journal of Materials Engineering, 2003, 0(8): 28-32.
链接本文:  
http://jme.biam.ac.cn/CN/      或      http://jme.biam.ac.cn/CN/Y2003/V0/I8/28
[1] Rogers C A. The pawn of new materials age[J]. Journal of Intelligent Material Systems and Structures, 1993, 4(1):4-12.
[2] 姚康德,许美萱.智能材料——21世纪的新材料[M].天津:天津大学出版社,1996.
[3] 陶宝祺.智能材料结构[M].北京:国防工业出版社,1997.
[4] Tanaka K. A thermomechanical sketch of shape memory effect:one-dimensional tensile behavior[J]. Res Mechanica, 1986, 18:251-263.
[5] Liang C, Rogers C A. One-dimensional thermomechanical constitutive relations for shape memory materials[J]. J of Intell Mater Syst and Struct, 1990, 1:207-234.
[6] Brison L C, Huang M S. Simplifications and comparisons of shape memory alloy constitutive modols[J]. J of Intell Mater Syst and Struct, 1996, 7:108-118.
[7] Wei Z G, Sandstrom R, Miyazaki S. Shape memory materials and hybrid composites for smart systems. Part II:Shape-memory hybrid composites[J]. Journal of Materials Science, 1998, 33(15):3763-3783.
[8] Song Guquan, Sun Qingping, Cherkaoui M. Role of microstructure in the thermomechanical behaviour of SMA composites[J].Transactions of the ASME, 1999, 121(1):86-92.
[9] Bo Z, Lagoudas D C. Thermomechanical modeling of polycrystalline SMAs under cyclic loading. Part I:Theoretical Derivations[J]. International Journal of Engineering Science, 1999, 37(9):1089-1140.
[10] Birman V. Review of mechanics of shape memory alloy structures[J]. Applied Mechanics Review, 1997, 50(11):629-645.
[11] Yasubumi Furuya. Design and material evaluation of shape memory composites[J]. Journal of Intelligent Material Systems and Structures, 1996, 7:71.
[12] Airoldi G, Pozzi M. Electrical Transport Properties of Shape Memory Alloys under a Stress State[J]. Journal of Engineering Materials and Technology, Transactions of the ASME, 1999, 121(1):108-111.
[13] Carvallo M, Pu Z J, Wu K H. Variation of electrical resistance and the elastic modulus of shape alloys under different loading and temperature conditions[J]. J of Intell Mater Syst and Struct, 1995, 6(7):557-565.
[14] 胡自力.含损伤SMA增强智能复合材料的性能表征与损伤分析[D].南京航空航天大学博士学位论文,2003.
[1] 王宁, 李健, 关志军, 谭凯. 工艺参数对钼粉烧结体近等温包套锻造成形过程中应变的影响[J]. 材料工程, 2015, 43(6): 46-51.
[2] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
[3] 黄东男, 于洋, 李有来, 左壮壮. 复杂断面空心铝型材分流模挤压焊合过程金属流变行为分析[J]. 材料工程, 2014, 0(9): 68-75.
[4] 王国林, 刘高君, 王磊, 张铃欣. 轮胎胎面胶料共挤出成型的有限元仿真研究[J]. 材料工程, 2014, 0(2): 51-54.
[5] 杨亮, 李嘉荣, 金海鹏, 谢洪吉, 韩梅, 刘世忠. DD6单晶精铸薄壁试样定向凝固过程数值模拟[J]. 材料工程, 2014, 0(11): 15-22.
[6] 强斌, 刘宇杰, 阚前华. 粘接界面泡沫铝夹芯板的三点弯曲失效数值模拟[J]. 材料工程, 2014, 0(11): 97-101.
[7] 王卺, 赵国群, 王广春, 袁君. 应力三轴度及轧辊凸度对93钨合金板材轧制损伤的影响[J]. 材料工程, 2014, 0(10): 27-33.
[8] 于超, 任会兰, 宁建国. 钨合金力学性能表征分子动力学模拟[J]. 材料工程, 2014, 0(10): 82-89.
[9] 刘庆生, 何文, 曾芳金, 薛济来. 不同铝电解时间下阴极炭块的损伤特性研究[J]. 材料工程, 2013, 0(7): 92-96.
[10] 廖娟, 凌泽民, 彭小洋. 考虑相变的铝合金管焊接残余应力数值模拟[J]. 材料工程, 2013, 0(4): 34-38.
[11] 黄东男, 于洋, 宁宇, 马玉. 分流模挤压非对称断面铝型材有限元数值模拟分析[J]. 材料工程, 2013, 0(3): 32-37.
[12] 赵彦玲, 周凯, 车万博, 铉佳平, 车春雨. 铝硅合金轧制中增强体颗粒应力集中数值模拟[J]. 材料工程, 2013, 0(3): 51-54,60.
[13] 王晓霞, 王成国, 贾玉玺, 罗玲. 热固性树脂固化动力学模型简化的新方法[J]. 材料工程, 2012, 0(6): 67-70.
[14] 刘海燕, 宋卫东, 栗建桥. 钨合金动态力学性能的三维数值模拟研究[J]. 材料工程, 2012, 0(6): 71-75.
[15] 朱飞, 张林进, 蔡道林, 叶旭初. 卧式行星球磨机最佳参数的数值模拟[J]. 材料工程, 2012, 0(5): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn