Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (3): 10-15    DOI: 10.3969/j.issn.1001-4381.2013.03.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
TiAl3对TiC粒子在铝熔体中沉淀特性的影响机理
丁万武1,2, 夏天东1,2, 赵文军1,2
1. 兰州理工大学 甘肃省有色金属新材料省部共建国家重点实验室,兰州 730050;
2. 兰州理工大学 有色金属合金及加工教育部重点实验室,兰州 730050
Effect Mechanism of TiAl3 on the Precipitation of TiC Particles in Aluminum Melt
DING Wan-wu1,2, XIA Tian-dong1,2, ZHAO Wen-jun1,2
1. State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China;
2. Key Laboratory of Non-ferrous Metal Alloys(Ministry of Education), Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(3875 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用金相显微镜(MEF3)、电子探针(EPMA)等研究TiC和TiAl3细化工业纯铝时TiAl3的存在对TiC在铝熔体中沉淀特性的影响规律,分析其影响机制。结果表明:TiC在铝熔体中单独存在时沉淀速率快,在较短时间保温后,大量TiC发生沉淀,从而限制其异质形核作用;当TiC和TiAl3在铝熔体中共同存在时,TiC沉淀速率变缓,在较长时间保温后,只有少量TiC发生沉淀,表现出较强形核能力和抗晶粒细化衰退能力。其影响机理是:TiAl3在铝熔体中增大了TiC粒子的沉降阻力,使得TiC粒子沉降速率变缓而在凝固时成为α(Al)的异质形核质点。Al-Ti-C合金细化作用衰减是由TiC发生沉淀引起。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁万武
夏天东
赵文军
关键词 TiAl3TiC沉淀影响机理    
Abstract:The effect of TiAl3 on the precipitation of TiC particles in aluminum melt was studied when TiC and TiAl3 refining industry aluminum, and the mechanism was discussed using MEF3 and EPMA. The results show that TiC particles deposit quickly and have poor nucleation capability when TiC is used as the α(Al) nucleation phase only, but when TiC and TiAl3 common as the α(Al) nucleation phase, TiC particles deposit more and more slow. Even after long time, there was only a small amount of precipitation. It demonstrated better nucleation and higher resistance to grain refining fading. The reason is that TiAl3 increase the settlement resistance of TiC particles. The refinement effect fading of Al-Ti-C master alloy is caused by TiC precipitation.
Key wordsTiAl3    TiC    precipitation    grain refinement
收稿日期: 2012-03-26      出版日期: 2013-03-20
中图分类号: 

TG146.2

 
基金资助:

国家高技术研究发展计划资助项目(2003AA33X050);兰州理工大学红柳青年教师培养计划资助项目

通讯作者: 夏天东(1965-),男,教授,博士,联系地址:甘肃省兰州市七里河区兰工坪287号兰州理工大学材料学院(730050),     E-mail: xiatid@lut.cn
作者简介: 丁万武(1979-),男,助理研究员,博士生,主要从事有色金属材料及其制备技术研究,联系地址:甘肃省兰州市七里河区兰工坪287号兰州理工大学材料学院(730050),E-mail:dingww@lut.cn
引用本文:   
丁万武, 夏天东, 赵文军. TiAl3对TiC粒子在铝熔体中沉淀特性的影响机理[J]. 材料工程, 2013, 0(3): 10-15.
DING Wan-wu, XIA Tian-dong, ZHAO Wen-jun. Effect Mechanism of TiAl3 on the Precipitation of TiC Particles in Aluminum Melt. Journal of Materials Engineering, 2013, 0(3): 10-15.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.03.003      或      http://jme.biam.ac.cn/CN/Y2013/V0/I3/10
[1] McCARTNEY D G. Grain refining of aluminium and its alloys using inoculants[J]. International Materials Reviews, 1989, 34(5):247-260.
[2] MURTY B S, KORI S A, CHAKRABORTY M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J]. International Materials Reviews, 2002, 47(1):3-29.
[3] JONES G, PEARSON J. Factors affecting the grain-refinement of aluminum using titanium and boron additives[J]. Metallurgical and Materials Transactions, 1976, 7(2):223-234.
[4] BUNN A M, SCHUMACHER P, KEARNS M A, et al. Grain refinement by Al-Ti-B alloys in aluminium melts a study of the mechanisms of poisoning by zirconium[J]. Materials Science and Technology, 1999, 15(10):1115-1123.
[5] LI H, SRITHARAN T, SEOW H P. Grain refinement of DIN226 alloy at high titanium and boron inoculation levels[J]. Scripta Materialia, 1996, 35(7):869-872.
[6] 高泽生. Al-Ti-C 晶粒细化用中间合金的最新进展[J].轻合金加工技术,1998,26(10):5-11.GAO Ze-sheng. Recent development of Al-Ti-C grain refining master alloys[J].Light Alloys Pressing Technology,1998,26(10):5-11.
[7] LI Jian-guo, HUANG Min, MA Mo, et al. Performance comparison of AlTiC and AlTiB master alloys in grain refinement of commercial and high purity aluminum[J].Transactions of Nonferrous Metals Society of China, 2006, 16(2):243-253.
[8] LIU Xiang-fa, WANG Zhen-qing. The relationship between microstructures and refining performances of Al-Ti-C master alloys[J]. Mater Sci Eng A, 2002, A332: 70-74.
[9] WANG Zhen-qing, LIU Xiang-fa, LIU Yan-hui, et al. Structural heredity of TiC and its influences on refinement behaviors of AlTiC master alloy[J]. Trans Nonferrous Met Soc China, 2003, 13(4): 790-793.
[10] 李英龙,温景林,陈彦博,等. SHS 技术制备Al-3Ti-0.15C 晶粒细化剂[J].中国有色金属学报,2004, 14(2):179-183. LI Ying-long, WEN Jing-ling, CHEN Yan-bo, et al.Al-3Ti-0.15C grain refiner prepared by SHS[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(2):179-183.
[11] 赵文军,丁万武,夏天东,等.A1-Ti-C中间合金制备方法及细化机理研究现状[J].铸造技术,2008, 29(11):1559-1562. ZHAO Wen-jun, DING Wan-wu, XIA Tian-dong,et al. Research status and development trend of preparation of Al-Ti-C master alloy[J]. Foundry Technology,2008,29(11): 1559-1562.
[12] IQBAL N, Van DIJK N H, OFFERMAN S E, et al. In situ investigation of the crystallization kinetics and the mechanism of grain refinement in aluminum alloys[J]. Mater Sci Eng A, 2006, A416: 18-32.
[13] 肖政兵,邓运来,唐建国,等.Al-Ti-C与Al-Ti-B晶粒细化剂Zr中毒机理[J].中国有色金属学报,2012, 22(6):371-378. XIAO Zheng-bing, DENG Yun-lai, TANG Jian-guo, et al. Poisoning mechanism of Zr on grain refiner of Al-Ti-C and Al-Ti-B[J].The Chinese Journal of Nonferrous Metals, 2012,22(6): 371-378.
[14] 王淑俊. 含 Zr 铝合金的细化"中毒"现象及其细化新工艺研究. 济南: 山东大学, 2009.1-69.
[15] 夏天东,丁万武,赵文军,等. TiAl3对TiC粒子在铝基体中分布及α(Al)晶粒形核的影响[J].中国有色金属学报, 2009, 19(11):1948-1955. XIA Tian-dong, DING Wan-wu, ZHAO Wen-jun,et al. Effect of distribution of TiC in aluminum matrix in the presence of solute TiAl3 and nucleation mechanism of Al-Ti-C[J].The Chinese Journal of Nonferrous Metals, 2009,19(11): 1948-1955.
[16] 丁万武,夏天东,赵文军,等.中间合金中第二相粒子TiC和TiAl3对纯铝的细化作用[J].中国有色金属学报, 2009, 19(6):1025-1031. DING Wan-wu, XIA Tian-dong, ZHAO Wen-jun,et al. Research on refining performances of TiC and TiAl3 phases in mast alloys for commercially aluminum[J].The Chinese Journal of Nonferrous Metals, 2009,19(6): 1025-1031.
[17] 严有为,刘生发,范晓明,等.自蔓延高温合成Al-TiC晶粒细化剂及其晶粒细化效果[J].中国有色金属学报, 2002, 12(5):977-981. YAN You-wei, LIU Sheng-fa, FAN Xiao-ming,et al. SHS of Al-TiC grain refiners and their grain refining performances for commercially pure aluminum[J].The Chinese Journal of Nonferrous Metals, 2002,12(5): 977-981.
[18] 刘相法,边秀房,薛佩军,等.TiAl3在铝熔体中结构遗传的动力学研究[J].机械工程学报,1999,35(3):67-71. LIU Xiang-fa, BIAN Xiu-fang , XUE Pei-jun,et al. Structure hereditary dynamics of TiAl3 in Al melt[J]. Chinese Journal of Mechanical Engineering, 1999,35(3):67-71.
[19] 吴德海,任家列,陈森灿.近代材料加工原理[M].北京:清华大学出版社,1997.178-179.
[20] YU Li-na, LIU Xiang-fa. Ti transition zone on the interface between TiC and aluminum melt and its influence on melt viscosity[J]. Journal of Materials Processing Technology, 2007,182:519-524.
[1] 刘闪光, 李国爱, 罗传彪, 李海超, 陆政, 戴圣龙. Sc元素对ZL205A合金组织和力学性能的影响[J]. 材料工程, 2020, 48(1): 84-91.
[2] 毕松, 汤进, 王鑫, 侯根良, 李军, 刘朝辉, 苏勋家. 共沉淀过程中镍锌添加比例对两步法制备的Ni0.5Zn0.5Fe2O4吸波性能的影响[J]. 材料工程, 2019, 47(4): 91-96.
[3] 廖万能, 刘雪峰, 王思清. 控温铸型连铸Cu-Ni-Si合金的加工工艺与组织性能的关系及其机理[J]. 材料工程, 2019, 47(10): 44-52.
[4] 邹海强, 杨隽逸, 郑玉婴, 陈健, 卢秀恋. 液相共沉淀法制备MnO2/CNFs催化剂及其低温脱硝性能[J]. 材料工程, 2018, 46(9): 53-58.
[5] 许婷, 方晓英, 朱言利, 王铭, 尹文红, 郭红. 双相不锈钢中奥氏体沉淀相的晶粒取向及界面特征分布[J]. 材料工程, 2018, 46(2): 34-40.
[6] 马世榜, 夏振伟, 徐杨, 施焕儒, 王旭, 郑越. 激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性[J]. 材料工程, 2017, 45(6): 24-30.
[7] 邓城, 漆小鹏, 李倩, 尹从岭, 杨辉. 沉淀法与水热法合成载银羟基磷灰石及其抗菌性能[J]. 材料工程, 2017, 45(4): 113-120.
[8] 李佳, 盛光敏, 黄利. Ti/Nb作中间层脉冲加压扩散连接TiC金属陶瓷与不锈钢[J]. 材料工程, 2017, 45(3): 54-59.
[9] 柳建, 朱胜, 蔡志海, 张平, 刘军, 秦航, 仝永刚. FV520B沉淀硬化不锈钢的MAG堆焊再制造力学特性[J]. 材料工程, 2017, 45(10): 23-31.
[10] 王红星, 毛向阳, 沈彤, 张月. 纳米TiC颗粒对Ni-TiC复合镀层组织与性能的影响[J]. 材料工程, 2017, 45(1): 52-57.
[11] 刘晓艳, 王召朋, 龙亮, 张喜亮, 崔好选, 高飞. Mg与Ag含量对Al-Cu-Mg-Ag新型耐热铝合金晶间腐蚀性能的影响[J]. 材料工程, 2016, 44(9): 68-75.
[12] 陈洁, 袁铁江. 柠檬酸根对纳米Fe3O4制备及其性能的影响[J]. 材料工程, 2015, 43(6): 85-89.
[13] 李雪爱, 王春生, 韩喜江. 原位化学沉淀法制备Fe3O4-石墨复合材料的吸波性能[J]. 材料工程, 2015, 43(5): 44-49.
[14] 刘胜明, 汤爱涛, 陈敏, 赵子鹏. 钛铁矿原位反应合成Al2O3-TiC颗粒增强铁基复合材料[J]. 材料工程, 2015, 43(1): 18-23.
[15] 李佳, 盛光敏. Ti/Nb/Cu作缓冲层的TiC金属陶瓷/304不锈钢扩散连接[J]. 材料工程, 2014, 0(12): 60-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn