Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (4): 74-80    DOI: 10.3969/j.issn.1001-4381.2013.04.014
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
板条状马氏体形貌和惯习面的 3D EBSD分析
王会珍, 杨平, 毛卫民
北京科技大学 材料科学与工程学院,北京 100083
3D EBSD Analysis of Morphology and Habit Plane for Lath Martensite
WANG Hui-zhen, YANG Ping, MAO Wei-min
School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China
全文: PDF(6079 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用3D EBSD-FIB(three dimensional electron backscatter diffraction-focused ion beam)技术,以高锰钢为实验材料,构建晶粒三维立体形貌,并对马氏体惯习面进行观察分析。结果表明:热致板条状马氏体表面平直,接近马氏体的{110}α,惯习面平行于奥氏体的{225}γ,其初始形核及后期生长均在{225}γ上进行;而形变诱发形成的板条状马氏体表面和惯习面分布近于{021}α和{225}γ,初始形核和前期生长沿{225}γ,后期生长沿{111}γ,由于外加应力,其表面发生弯曲变形,形核时间不同,偏离{225}γ-{111}γ程度不同。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王会珍
杨平
毛卫民
关键词 高锰钢3D-EBSD-FIB板条状马氏体三维立体形貌惯习面    
Abstract:The 3D morphology of lath martensite was reconstructed, and its habit plane was analyzed in high manganese steels,using a system of 3D EBSD-FIB (three dimensional electron backscatter diffraction- focused ion beam). The results show that the surfaces of thermally-induced lath martensite are straight and close to martensitic {110}α, and the habit planes are close to austenitic {225}γ; the directions of initial nucleation and the later growth are along {225}γ plane. The surfaces and the habit planes of deformation-induced lath martensite are on the verge of {021}α and {225}γ, respectively; the nucleation and early growth are along {225}γ, while later growth planes are changed to {111}γ; because of the external stress, its surfaces are flexuous, and the degree of the deviations of the ones with {225}γ-{111}γ is various with nucleation time.
Key wordshigh manganese steel    3D-EBSD-FIB    lath martensite    3D morphology    habit plane
收稿日期: 2012-07-19      出版日期: 2013-04-20
中图分类号: 

TG142.33

 
  TG115

 
基金资助:

高等学校博士学科点专项科研基金资助项目(20090006110013)

通讯作者: 杨平(1959-),男,教授,主要研究方向:高锰钢形变再结晶,联系地址:北京市海淀区学院路30号北京科技大学材料学院材料学系(100083)     E-mail: yangp@mater.ustb.edu.cn
作者简介: 王会珍(1984-),女,博士,研究方向:高锰钢组织取向与相变,E-mail:xiyang1220@163.com
引用本文:   
王会珍, 杨平, 毛卫民. 板条状马氏体形貌和惯习面的 3D EBSD分析[J]. 材料工程, 2013, 0(4): 74-80.
WANG Hui-zhen, YANG Ping, MAO Wei-min. 3D EBSD Analysis of Morphology and Habit Plane for Lath Martensite. Journal of Materials Engineering, 2013, 0(4): 74-80.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.04.014      或      http://jme.biam.ac.cn/CN/Y2013/V0/I4/74
[1] LIN F X, GODFREY A, JENSEN D J, et al. 3D EBSD characterization of deformation structures in commercial purity aluminum[J]. Mater Charact,2010,61(11):1203-1210.

[2] 栾军华, 刘国权, 王浩. 纯Fe试样中晶粒的三维可视化重建[J]. 金属学报,2011,47(1): 69-73.LUAN J H, LIU G Q, WANG H. Three-dimensional reconstruction of grains in pure iron specimen[J]. Acta Metall Sin, 2011,47(1):69-73.

[3] ROWENHORST D J,GUPTA A, FENG C R, et al. Crystallographic and morphological analysis of coarse martensite: combining EBSD and serial sectioning[J]. Scr Mater,2006,55(1):11-16.

[4] 吴开明. 连续截面和计算机辅助重建法观察Fe-0.28C-3.0Mo合金钢退化铁素体的三维形貌[J].金属学报,2005,41(12):1237-1242.WU K M. 3-D morphology observation of degenerate ferrite in steel Fe-0.28C-3.0Mo using serial sectioning and computer-aided reconstruction[J]. Acta Metall Sin,2005,41(12):1237-1242.

[5] ZAAFARANI N, RAASBE D, SINGH R N, et al. Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations[J]. Acta Mater,2006,54(7):1863-1876.

[6] XU W, FERRY M, MATEESCU N, et al. Techniques for generating 3-D EBSD microstructures by FIB tomography[J].Mater Charact,2007,58(10):961-967.

[7] NAVE M D, MULDERS J J L, GHOLIN I A. Twin characterisation using 2D and 3D EBSD[J].Chin J Stereol Image Anal,2005,10(4):199-204.

[8] CALCAGNOTTO M, PONGE D, DEMIR E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD[J]. Mater Sci Eng:A,2010,527(10-11):2738-2746.

[9] KONRAD J, ZAEFFERER S, RAABE D. Investigation of orientation gradients around a hard laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique[J].Acta Mater,2006,54(5):1369-1380.

[10] GROEBER M A, HALEY B K, UCHIC M D, et al. 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system[J]. Mater Charact,2006,57(4-5): 259-273.

[11] WIRTH R. Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale[J]. Chem Geol,2009,261(3-4):217-229.

[12] BHANDARI Y, SARKAR S, GROEBER M, et al. 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis[J].Comput Mater Sci,2007,41(2):222-235.

[13] BERNARD D, GENDRON D, HEINTZ J M, et al.First direct 3D visualisation of microstructural evolutions during sintering through X-ray computed microtomography[J].Acta Mater,2005,53(1):121-128.

[14] DÖBRICH K M, RAU C, KRILL C E. Quantitative characterization of the three-dimensional microstructure of polycrystalline Al-Sn using X-ray microtomography[J].Metall Mater Trans A,2004,35(7):1953-1961.

[15] KRAL M V, SPANOS G. Three-dimensional analysis and classification of grain-boundary-nucleated proeutectoid ferrite precipitates[J]. Metall Mater Trans A,2005,36(5):1199-1207.

[16] KUBIS A J, SHIFLET G J, DUNN N D, et al. Focused ion-beam tomography[J].Metall Mater Trans A,2004,35(7):1935-1943.

[17] LUND A C, VOORHEES P W. A quantitative assessment of the three-dimensional microstructure of a γ-γ' alloy[J].Phil Mag,2003,83(14):1719-1733.

[18] LEWIS A C, BINGERT J F, ROWENHORST D J, et al. Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel[J].Mater Sci Eng:A,2006,418(1-2):11-18.

[19] HARA T, TSUCHIYA K, TSUZAKI K, et al. Application of orthogonally arranged FIB-SEM for precise microstructure analysis of materials[J]. J Alloys Compd, . http://dx.doi.org/10.1016/j.jallcom.2012.02.019.

[20] ABOU-RAS D, MARSEN B, RISSOM T, et al. Enhancements in specimen preparation of Cu(In,Ga)(S,Se)2 thin films[J]. Micron,2012,43(2-3):470-474.

[21] BACHMANN F, HIELSCHER R, SCHEABEN H. Grain detection from 2d and 3d EBSD data-specification of the MTEX algorithm[J]. Ultramicroscopy,2011,111(12):1720-1733.

[22] PURA J, KWASNIAK P, JAKUBOWSKA D, et al. Investigation of degradation mechanism of palladium-nickel wires during oxidation of ammonia[J]. Catal Today, . http://dx.doi.org/10.1016/j.ultramic.2011.08.002.

[23] GHOSH S, BHANDARI Y, GROEBER M. CAD-based reconstruction of 3D polycrystalline alloy microstructures from FIB generated serial sections[J]. Comput Aided Des,2008,40(3):293-310.

[24] DUNNE D P, BOWLES J S. Measurement of the shape strain for the (225) and (259) martensitic transformations[J].Acta Metall,1969,17(3):201-212.

[25] DAUTOVICH D P, BOWLES J S. The orientation relationship of the (225)F martensitic transformation in an Fe-Mn-C alloy[J].Acta Metall,1972,20(10):1137-1142.

[26] KELLY P M. Martensite crystallography—the role of the shape strain[J].Mater Sci Eng:A,2006,438-440:43-47.

[27] ZHANG X M, GAUTIER E, SIMON A. Martensite morphology and habit plane transitions during tensile tests for Fe-Ni-C alloys[J].Acta Metall,1989,37(2):477-485.
[1] 包昂, 卢德宏. WCp/高锰钢基复合材料及复合结构的冲击磨损性能[J]. 材料工程, 2018, 46(4): 91-98.
[2] 刘俊友, 伍燕生, 魏立, 王士本, 闫涛, 刘卫东. 高锰钢中碳化物的形成特征及其高温固溶行为研究[J]. 材料工程, 2003, 0(3): 24-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn