Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (4): 85-91    DOI: 10.3969/j.issn.1001-4381.2013.04.016
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
电场诱导对不饱和聚酯树脂/炭纤维/纳米炭黑复合材料性能的影响
赵博1, 李晓刚1,2, 高瑾1,2, 杜翠薇1,2
1. 北京科技大学 腐蚀与防护中心,北京 100083;
2. 北京科技大学 腐蚀与防护教育部重点实验室,北京 100083
Effect of Electric Field Induced on Property of Unsaturated Polyester Resin/Carbon Fibre/Nanosize Carbon Black Composite
ZHAO Bo1, LI Xiao-gang1,2, GAO Jin1,2, DU Cui-wei1,2
1. Corrosion and Protection Centre,University of Science and Technology Beijing,Beijing 100083,China;
2. Key Laboratory of Corrosion and Protection (Ministry of Education),University of Science and Technology Beijing,Beijing 100083,China
全文: PDF(6008 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用不饱和聚酯树脂(UPR)、导电炭纤维(CF)和纳米炭黑(CB)制备了一种复合材料,对比分析电场诱导对材料的电学性能和基本力学性能的影响。结果表明:在导电填料添加适量的情况下,采用0.3V/μm的直流电场诱导可以提高复合材料的导电能力,并表现出一定程度的各向异性。其中CB的添加量为0.5phr时,复合材料的电场诱导效果最佳;CF添加量为3,6,9phr的复合材料在电场线轴向的体积电阻率分别降低了46.8%,29.0%,12.5%,在电场线法向的体积电阻率分别降低了28.6%,18.8%,8.3%。同时,电场诱导基本没有改变复合材料力学特征,复合材料的基本力学性能与常规成型基本保持一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵博
李晓刚
高瑾
杜翠薇
关键词 不饱和聚酯树脂电场诱导电学性能力学性能    
Abstract:A type of composite was made of unsaturated polyester resin(UPR), carbon fibre(CF), and nanosize carbon black(CB). The electrical and basic mechanical properties of the composite with electric field induced and conventional molding was compared and analyzed. The results showed that the conductivity of composite was anisotropic and could be enhanced when the filling amount was appropriate with 0.3V/μm direct current (DC) electric field induced. The best CB filling amount was 0.5phr. At that time, the volume resistivity of composite with CF filling amount was 3,6,9phr reduced 46.8%,29.0%,12.5% at axial direction, and 28.6%,18.8%,8.3% at normal direction of electric field line. Meanwhile, the basic mechanical properties of composite was not changed by electric field induced,and maintained substantially constant.
Key wordsunsaturated polyester resin    electric field induced    electrical property    mechanical property
收稿日期: 2012-01-12      出版日期: 2013-04-20
中图分类号: 

TQ327.3

 
基金资助:

国家自然科学基金重点资助项目(51131001);国家科技基础条件平台建设项目资助(2005DKA10400)

作者简介: 赵博(1984-),男,博士研究生,研究方向为纤维增强型高分子材料的性能研究和金属腐蚀与防护,联系地址:北京科技大学新材料技术研究院(100083),E-mail:zhaobo19840626@gmail.com
引用本文:   
赵博, 李晓刚, 高瑾, 杜翠薇. 电场诱导对不饱和聚酯树脂/炭纤维/纳米炭黑复合材料性能的影响[J]. 材料工程, 2013, 0(4): 85-91.
ZHAO Bo, LI Xiao-gang, GAO Jin, DU Cui-wei. Effect of Electric Field Induced on Property of Unsaturated Polyester Resin/Carbon Fibre/Nanosize Carbon Black Composite. Journal of Materials Engineering, 2013, 0(4): 85-91.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.04.016      或      http://jme.biam.ac.cn/CN/Y2013/V0/I4/85
[1] 游佩林. 铁路罐车静电起电方程及静电放电的危害[J]. 铁道学报,1990,12(3):8-15.YOU Pei-lin. Equation of static electrification and hazards of electrostatic discharge with rail tanker[J]. Journal of the China Railway Society,1990,12(3):8-15.

[2] LIU Hui, LI Yan-qiang. Simulation research on control technology of micro-particle adhesion to surface[J]. Advanced Materials Research,2011,181-182:366-371.

[3] MARTIN C A, SANDLER J K W, WINDLE A H, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites[J]. Polymer,2005,46(3):877-886.

[4] 陈珂,熊传溪,舒本勤,等. PET抗静电复合材料的性能研究[J]. 工程塑料应用,2008,36(6):5-8.CHEN Ke, XIONG Chuan-xi, SHU Ben-qin, et al. Study on properties of pet antistatic composites[J]. Engineering Plastics Application,2008,36(6):5-8.

[5] 王俊, 王平华, 唐龙祥,等. PP/ 碳纳米管复合材料的制备及电性能[J]. 高分子材料科学与工程,2011,27(1):138-141. WANG Jun, WANG Ping-hua, TANG Long-xiang, et al. Electrical property of PP/carbon nanotubes nanocomposites[J].Polymer Materials Science & Engineering,2011,27(1):138-141.

[6] LIU Xiang-xuan, ZHANG Ze-yang, WU You-peng. Absorption properties of carbon black/silicon carbide microwave absorbers[J]. Composites Part B:Engineering,2011,42(2):326-329.

[7] VAIDYA S. Experimental evaluation of electrical conductivity of carbon fiber reinforced fly-ash based geopolymer[J]. Smart Structures and Systems,2011,7(1):27-40.

[8] 杜彦, 季铁正, 唐婷. 聚乙烯基导电复合材料的研究[J]. 中国塑料,2012,26(4):22-26.DU Yan, JI Tie-zheng, TANG Ting. Research on polyethylene-based electrical conductive composites[J]. China Plastics,2012,26(4):22-26.

[9] 曹清华, 孟庆荣, 贾伟灿, 等. 高比表面积炭黑/聚丙烯导电复合材料[J]. 复合材料学报,2012,29(2):59-64. CAO Qing-hua, MENG Qing-rong, JIA Wei-can, et al. Conductive composites of high surface area carbon black/polypropylene[J]. Acta Materiea Compositea Sinica,2012,29(2):59-64.

[10] 戚亚光. 世界导电塑料工业化进展[J]. 工程塑料应用,2008,36(3):73-77. QI Ya-guang. Progress in industrialization of worldwide conductive plastics[J]. China Plastics Industry,2008,36(3):73-77.

[11] TANG L S, MARIATTI M. Comparison on the properties of nickel-coated graphite(NCG)and graphite particles as conductive fillers in polypropylene(PP) composites[J]. Polymer-Plastics Technology and Engineering,2009,48(6):614-620.

[12] 周生泰, 王伟, 冯绍华. 低密度聚乙烯基碳黑导电复合材料性能研究[J]. 现代塑料加工应用,2012,24(3):24-26. ZHOU Sheng-tai, WANG Wei, FENG Shao-hua. Study on properties of carbon-filled-LDPE conductive composites[J].Modern Plastics Processing and Applications,2012,24(3):24-26.

[13] 金政, 闫善涛, 李瑞琦, 等. 石墨/ABS树脂导电复合材料的研究[J]. 黑龙江大学自然科学学报,2012,29(1):95-98. JING Zheng, YAN Shan-tao, LI Rui-qi, et al. Study on graphite /ABS resin conductive composites[J]. Journal of Natural Science of Heilongjiang University,2012,29(1):95-98.

[14] LEE Y B, LEE C H, KIM K M, et al. Preparation and properties on the graphite/polypropylene composite bipolar plates with a 304 stainless steel by compression molding for PEM fuel cell[J]. International Journal of Hydrogen Energy,2011,36(13):7621-7627.

[15] CHUNG S, HWANG J, LEE J. Conductivity of single walled carbon nanotubes deposited by composite electric field guided assembly (CEGA) method[J] . Current Applied Physics,2006,6(S1):161-165.

[16] 王海泉, 陈国华. 电场诱导粒子取向排列的研究进展[J]. 华侨大学学报:自然科学版,2008,29(4):490-494. WANG Hai-quan,CHEN Guo-hua. Review on the orientation and alignment of particles induced by electric field[J]. Journal of Huaqiao University(Natural Science),2008,29(4):490-494.

[17] YAN Ding-xiang, DAI Kun, XIANG Zhi-dong, et al. Electrical conductivity and major mechanical and thermal properties of carbon nanotube-filled polyurethane foams[J]. Journal of Applied Polymer Science,2011,120(5):3014-3019.

[18] PRASSE T, CAVAILLE J Y, BAUHOFER W. Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment[J]. Composites Science and Technology,2003,63:1835-1841.

[19] TIE W, YANG G H, BHATTACHARYYA, et al. Electric-field-induced dispersion of multiwalled carbon nanotubes in nematic liquid crystal[J]. Journal of Physical Chemistry C,2011,115(44):21652-21658.

[20] WANG H Q, ZHANG H Y, ZHAO W F, et al. Preparation of polymer/oriented graphite nanosheet composite by electric field inducement[J]. Composites Science and Technology,2008,68(1):238-243.

[21] WANG H Q, WANG L T, ZHANG H Y. Alignment of graphite nanosheet induced by electric field[J]. Advanced Materials Research,2011,279:157-160.

[22] NATTHAKARN R, SUPAKANOK T, PIYASAN P. Alignment of carbon nanotubes in polyimide under electric and magnetic fields[J]. Journal of Applied Polymer Science,2012,123(6):3470-3475.

[23] NORMAN D A, ROBERTSON R E. The effect of fiber orientation on the toughening of short fiber reinforced polymers[J]. Journal of Applied Polymer Science,2003,90(10):2740-2751.

[24] KIM G. Thermo-physical responses of polymeric composites tailored by electric field[J]. Composites Science and Technology,2005,65(11-12):1728-1735.

[25] PECHOVSKAYA K, MIL'MAN T, DOGADKIN B. Structure and properties of loaded rubber mixtures. IX. modification of carbon structures by repeated deformations[J]. Rubber Chemistry and Technology,1953,26(4):810-820.

[26] 苏洪钎, 祝晓虹, 蒋淮渭, 等. 聚乙烯/导电炭黑复合材料的电流-电压特性[J]. 化学物理学报,1989,2(2):151-159. SU Hong-qian, ZHU Xiao-hong, JIANG Huai-wei, et al. On the current-voltage characteristics of polyethylene-carbon black conductive composites[J]. Chinese Journal of Chemical Physics,1989,2(2):151-159.

[27] JONES T B. Dielectrophoretic force calculation[J]. Journal of Electrostatics,1979,6(1):69-82.

[28] BÖTTCJER C J F. Theory of Electric Polarization[M]. New York:Elsevier,1973.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[15] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn