Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (6): 5-10    DOI: 10.11868/j.issn.1001-4381.2014.06.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
低碳硅锰系Q&P钢增塑机制及组织性能
陈连生, 赵远, 田亚强, 宋进英, 魏英立, 杨栋
河北联合大学 河北省现代冶金技术重点实验室, 河北 唐山 063009
Low Carbon Si-Mn Q&P Steel Plasticity Enhancement Mechanisms and Microstructure Property
CHEN Lian-sheng, ZHAO Yuan, TIAN Ya-qiang, SONG Jin-ying, WEI Ying-li, YANG Dong
Hebei Key Laboratory of Modern Metallurgy Technology, Hebei United University, Tangshan 063009, Hebei, China
全文: PDF(3375 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用双相区保温-淬火-配分工艺对低碳硅锰钢进行处理,通过场发射扫描电镜、X射线衍射仪和拉伸实验等对该Q&P钢增塑机制及其组织性能进行研究。结果表明:实验用钢经双相区保温-淬火-配分处理后,综合力学性能优于传统Q&P钢;双相区合理的保温时间可以减少室温组织中二次淬火马氏体含量,以保证更好的塑性;实验用钢经Q&P工艺处理后室温残余奥氏体含量为4.9%,而经双相区保温-淬火-配分处理时,随着双相区保温时间的延长,室温残余奥氏体含量呈先增加后减少的趋势,在双相区720℃保温1500s再经Q&P处理后残余奥氏体含量达到最大值7.3%,综合力学性能最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈连生
赵远
田亚强
宋进英
魏英立
杨栋
关键词 Q&P钢残余奥氏体Mn配分力学性能强塑积    
Abstract:Low carbon Si-Mn steel was processed through intercritical insulation-quenching-partitioning. The plasticity enhancement mechanisms and organizational performance of the Q&P steel were studied by means of field emission scanning electron microscopy, X-ray diffraction and tensile tests. The results show that after intercritical insulation-quenching-partitioning, the steel demonstrates superior comprehensive mechanical property to traditional Q&P steel. Reasonable intercritical insulation time can reduce the secondary quenching martensite content in the organization, so as to ensure better plasticity. The content of retained austenite in the steel is 4.9% after Q&P processing. With the extension of the intercritical insulation time, the content of retained austenite in the steel first increases and then decreases after intercritical insulation-quenching-partitioning. When the steel is intercriticallly insulated at 720℃ for 1500s, and is then quenched and partitioned, the content of retained austenite in the steel reaches the maximum 7.3%, and the comprehensive mechanical property of the steel is the best.
Key wordsQ&P steel    retained austenite    Mn partitioning    mechanical property    product of strength and elongation
收稿日期: 2013-05-18      出版日期: 2014-06-20
中图分类号:  TG156.1  
  TG115.21  
基金资助:国家自然科学基金资助项目(51254004);河北省自然科学基金资助项目(E2014209191);河北省教育厅资助科研项目(YQ2013003)
作者简介: 陈连生(1968- ),男,教授,博士,主要从事金属材料及塑性成形工艺研究,联系地址:河北省唐山市河北联合大学科学技术处(063009),E-mail:kyc@heuu.edu.cn
引用本文:   
陈连生, 赵远, 田亚强, 宋进英, 魏英立, 杨栋. 低碳硅锰系Q&P钢增塑机制及组织性能[J]. 材料工程, 2014, 0(6): 5-10.
CHEN Lian-sheng, ZHAO Yuan, TIAN Ya-qiang, SONG Jin-ying, WEI Ying-li, YANG Dong. Low Carbon Si-Mn Q&P Steel Plasticity Enhancement Mechanisms and Microstructure Property. Journal of Materials Engineering, 2014, 0(6): 5-10.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.06.002      或      http://jme.biam.ac.cn/CN/Y2014/V0/I6/5
[1] SPEER J G, MATLOCK D K, DE COOMAN B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622.
[2] SPEER J G, RIZZO F C, MATLOCK D K, et al. The "quenching and partitioning" process: background and recent progress[J]. Materials Research, 2005, 8(4): 417-423.
[3] De COOMAN B C, SPEER J G. Quench and partitioning steel: a new AHSS concept for automotive anti-intrusion applications[J]. Steel Research Int, 2006, 77(9-10): 634-640.
[4] 王存宇, 时捷, 曹文全, 等.含碳量对淬火-配分-回火工艺处理钢力学性能的影响[J].热加工工艺, 2011, 40(22):158-163.WANG Cun-yu, SHI Jie, CAO Wen-quan, et al. Effect of carbon content on mechanical properties of steel treated by quenching-partitioning-tempering process[J]. Hot Working Technology, 2011, 40(22): 158-163.
[5] 庄宝潼, 唐荻, 江海涛, 等.汽车用高强度Q&P钢的组织与力学性能[J].北京科技大学学报, 2012, 34(4):390-396.ZHUANG Bao-tong, TANG Di, JIANG Hai-tao, et al. Microstructure and mechanical properties of high strength Q&P steel for automobiles[J]. Journal of University of Science and Technology Beijing, 2012, 34(4): 390-396.
[6] SALEH M H, PRIETNER R. Retained austenite in dual-phase silicon steels and its effect on mechanical properties[J]. Material Processing Technology, 2001, 113(3): 587-593.
[7] 任勇强, 谢振家, 尚成嘉.低碳钢中残余奥氏体的调控及对力学性能的影响[J].金属学报, 2012, 48(9):1074-1080.REN Yong-qiang, XIE Zhen-jia, SHANG Cheng-jia. Regulation of retained austenite and its effect on the mechanical properties of low carbon steel[J]. Acta Metallurgica Sinica, 2012, 48(9): 1074-1080.
[8] TOJI Y, YAMASHITA T, NAKAJIMA K, et al. Effect of Mn partitioning during intercritical annealing on following γ→α transformation and resultant mechanical properties of cold-rolled dual phase steels[J]. ISIJ International, 2011, 51(5): 818-825.
[9] LEE S J, LEE S, DE COOMAN B C. Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel[J]. Scripta Materialia, 2011, 64(7): 649-652.
[10] SUN S, PUGH M. Manganese partitioning in dual-phase steel during annealing[J]. Materials Science and Engineering:A, 2000, 276(1-2): 167-174.
[11] MOOR E D, MATLOCK D K, SPEER J G, et al. Austenite stabilization through manganese enrichment[J]. Scripta Materialia, 2011, 64(2): 185-188.
[12] LEE S, LEE S J, DE COOMAN B C. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning[J]. Scripta Materialia, 2011, 64(3), 225-228.
[13] GB/T228-2002, 金属材料室温拉伸试验方法[S].
[14] 范雄.金属X射线学[M].北京:机械工业出版社, 1989.
[15] 钟宁.高强度Q&P钢和Q-P-T钢的研究[D].上海:上海交通大学博士学位论文, 2009.
[16] 王存宇, 时捷, 曹文全, 等.Q&P工艺处理低碳CrNi3Si2MoV钢中马氏体的研究[J].金属学报, 2011, 47(6):720-726. WANG Cun-yu, SHI Jie, CAO Wen-quan, et al. Study on the martensite in low carbon CrNi3Si2MoV steel treated by Q&P process[J]. Acta Metallurgica Sinica, 2011, 47(6): 720-726.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[15] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn