Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (6): 56-61    DOI: 10.11868/j.issn.1001-4381.2014.06.011
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
李奇1, 王宪成1, 蔡志海2, 底月兰2, 何星1
1. 装甲兵工程学院 机械工程系, 北京 100072;
2. 装甲兵工程学院 装备再制造工程系, 北京 100072
Influence of Loads on Tribological Property of Heavy Vechicle Engine Piston Ring-cylinder Liner
LI Qi1, WANG Xian-cheng1, CAI Zhi-hai2, DI Yue-lan2, HE Xing1
1. Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072, China;
2. Department of Equipment Remanufacture Engineering, Academy of Armored Force Engineering, Beijing 100072, China
全文: PDF(4916 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
摘要 利用SRV实验机模拟重型车辆发动机活塞环-缸套摩擦副的工作状态,测试了静载荷和动载荷条件下摩擦副的摩擦学性能。采用扫描电镜、能谱仪分析了磨痕形貌和化学成分,研究了摩擦副的磨损机制。结果表明:随静载荷的增加,摩擦副的摩擦因数减小,总失重量增加。摩擦副的磨损机理以磨粒磨损为主,在400N条件下活塞环的磨损机理为综合的磨粒磨损和黏着磨损。在低强度和中等强度动载荷条件下,摩擦副的摩擦因数随载荷的变化而呈循环变化,磨损机理以磨粒磨损为主。在高强度动载荷条件下,摩擦副的摩擦因数保持稳定,活塞环的磨损机理是综合的磨粒磨损、黏着磨损、疲劳磨损,缸套的磨损机理是综合的磨粒磨损、黏着磨损。摩擦副的总失重量随动载荷强度的增大而增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李奇
王宪成
蔡志海
底月兰
何星
关键词 活塞环-缸套动载荷静载荷磨损机理    
Abstract:Working conditions of piston ring-cylinder liner mate were simulated by SRV test rig. Friction coefficient and mass loss of mate under different static loads and vibration loads were tested. SEM-EDS were used to analyze wear marks and chemical composition. Wear mechanisms of piston rings-cylinder liners were researched. The results show that friction coefficient of mate decreases and mass loss increases with static load increasing. The main wear mechanism of mate is abrasive wear. The mechanism changes to abrasive wear and adhesion wear under 400N. Friction coefficient of mate appears cyclic change when loads alternate under low and moderate strength. The main wear mechanism of mate is abrasive wear. Friction coefficient of mate keeps stable under high strength. The wear mechanism of piston rings is comprehensive abrasive, adhesion and fatigue wear. The wear mechanism of cylinder liner is comprehensive abrasive, adhesion wear. Mass loss increases with strength of vibration load increasing.
收稿日期: 2012-10-22      出版日期: 2014-06-20
中图分类号:  TG115.58  
作者简介: 李奇(1982- ),男,博士,现从事发动机缸套-活塞环的摩擦磨损、表面工程的研究工作,联系地址:北京市丰台区杜家坎21号装甲兵工程学院机械工程系动力室(100072),E-mail:56414929@qq.com
引用本文:   
李奇, 王宪成, 蔡志海, 底月兰, 何星. null[J]. 材料工程, 2014, 0(6): 56-61.
LI Qi, WANG Xian-cheng, CAI Zhi-hai, DI Yue-lan, HE Xing. Influence of Loads on Tribological Property of Heavy Vechicle Engine Piston Ring-cylinder Liner. Journal of Materials Engineering, 2014, 0(6): 56-61.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.06.011      或      http://jme.biam.ac.cn/CN/Y2014/V0/I6/56
[1] 李奇, 王宪成, 何星, 等. 高功率密度柴油机缸套-活塞环摩擦副磨损失效机理[J]. 中国表面工程, 2012, 25(4):36-41.LI Q, WANG X C, HE X, et al. Wear failure mechanism of cylinder liner-piston ring friction pair for high power diesel engines[J]. China Surface Engineering, 2012, 25(4): 36-41.
[2] 蔡志海, 张平, 杜军, 等. 65Mn 钢基体 CrTiAlN 微纳米复合膜的制备与抗高温磨损性能研究[J]. 稀有金属材料与工程, 2010, 39(6): 336-340.CAI Z H, ZHANG P, DU J, et al. Investigation of preparation technologies and tribological properties at high-temperature of CrTiAlN composite films on 65Mn steel substrates[J]. Rare Metal Materials and Engineering, 2010, 39(6): 336-340.
[3] TRUHAN J J, QU Jun, BLAU P J. A rig test to measure friction and wear of heavy duty diesel engine piston rings and cylinder liners using realistic lubricants[J]. Tribology International, 2005, 38(3): 211-218.
[4] 孙耀文. 装甲车辆发动机缸套活塞环系统磨损仿真研究[D].北京:装甲兵工程学院硕士学位论文, 2009.
[5] HAHN M, BAUER C H, THEISSMANN R. The impact of microstructural alterations at spray coated cylinder running surfaces of diesel engines-findings from motor and laboratory benchmark tests[J]. Wear, 2011, 271(9-10):2599-2609.
[6] 王云霞, 阎逢元. SRV4摩擦测试系统在材料研究中的应用[J]. 工程与实验, 2009, (12): 30-59.WANG Y X, YAN F Y. Application of SRV4 testing system in materials research[J]. Engineering and Test, 2009, (12): 30-59.
[7] 黄刚, 吴开明, 周峰, 等. 薄板坯连铸连轧生产65Mn钢的CCT曲线和淬透性[J]. 材料工程, 2012, (4): 52-55.HUANG G, WU K M, ZHOU F, et al. CCT Diagram and hardenability of 65Mn steel produced by compact strip production[J]. Journal of Material Engineering, 2012, (4): 52-55.
[8] NAM P S. Tribophysics[M]. Beijing:World Publishing Corporation, 1989.73-75.
[9] GUO C, CHEN J M, ZHOU J S, et al. Microstructure and tribological properties of TiAg intermetallic compound coating[J]. Applied Surface Science, 2011, 257(24): 10692-10698.
[10] LA P Q, MA J Q, ZHU Y T, et al. Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation[J]. Acta Materialia, 2005, 53(19): 5167-5173.
[11] ASADI K S, ZARE B A, AKBARI A. The effect of sliding speed and amount of loading on friction and wear behavior of Cu-0.65 wt% Cr alloy[J]. Journal of Alloys Compounds, 2009, 486(1): 319-324.
[12] 布尚. 摩擦学导论[M]. 北京: 机械工业出版社, 2007.215-217.
[1] 李新星, 王红侠, 施剑峰, 韩伯群. TC11钛合金表面保护性摩擦氧化层的形成及作用[J]. 材料工程, 2020, 48(10): 141-147.
[2] 张欣悦, 张德坤, 陈凯, 徐寒冬. 聚醚醚酮与髌骨软骨间的生物摩擦学特性[J]. 材料工程, 2019, 47(2): 129-137.
[3] 徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
[4] 屈盛官, 杨章选, 赖福强, 和锐亮, 付志强, 李小强. 渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响[J]. 材料工程, 2018, 46(7): 136-143.
[5] 樊浩, 邢丽, 叶寅, 柯黎明, 傅徐荣. 旋转摩擦挤压制备MWCNTs/Al复合材料的组织及磨损性能[J]. 材料工程, 2016, 44(10): 47-53.
[6] 袁华, 王成国, 卢文博, 张姗, 陈旸, 谢奔. 连续炭纤维增强受电弓滑板致密化及其性能[J]. 材料工程, 2012, 0(7): 5-9.
[7] 濮春欢, 徐滨士, 王海斗, 朴钟宇. 含磨粒润滑条件下3Cr13涂层加速磨损机理研究[J]. 材料工程, 2009, 0(12): 58-61,66.
[8] 项忠霞, 董刚, 林彬, 沈兆光. Si3N4陶瓷-冷激铸铁在微量润滑条件下的摩擦学特性[J]. 材料工程, 2006, 0(4): 24-27,32.
[9] 乔玉林, 梁志杰, 孙晓峰, 徐滨士, 小豆岛明. 在点线接触条件下钢/钢摩擦副的干摩擦高温减摩抗磨性能的研究[J]. 材料工程, 2005, 0(11): 9-12,31.
[10] 邓陈虹, 陈广志, 葛启录. 配对材料对锡青铜基颗粒增强复合材料摩擦磨损性能的影响[J]. 材料工程, 2005, 0(11): 28-31.
[11] 邵鑫, 王宏刚, 毛绍兰, 高金堂. 双马来酰亚胺基耐高温固体润滑膜磨损机理的研究[J]. 材料工程, 2000, 0(1): 20-23.
[12] 李东生, 王秀飞, 钟志刚, 白同庆. 飞机摩擦副摩擦学特性研究[J]. 材料工程, 1997, 0(3): 3-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn