Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (6): 74-78    DOI: 10.11868/j.issn.1001-4381.2014.06.014
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
DZ466合金热障涂层CoCrAlY黏结层1050℃氧化行为
任维鹏1, 李青1, 肖程波1, 宋尽霞1, 何利民2, 黄光宏2, 曹春晓1
1. 北京航空材料研究院 先进高温结构材料重点实验室, 北京 100095;
2. 北京航空材料研究院 金属腐蚀与防护研究室, 北京 100095
Oxidation Behavior of CoCrAlY Bond Coating for Thermal Barrier Coating on DZ466 Super Alloy at 1050℃
REN Wei-peng1, LI Qing1, XIAO Cheng-bo1, SONG Jin-xia1, HE Li-min2, HUANG Guang-hong2, CAO Chun-xiao1
1. Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Metal Corrosion and Surface Protection Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(1324 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用电子束物理气相沉积(EB-PVD)法在一种新型定向合金DZ466试样上沉积CoCrAlY黏结层和Y2O3部分稳定的ZrO2(YSZ)陶瓷层,对试样进行1050℃循环氧化实验并研究其氧化行为。采用X射线衍射仪、扫描电镜以及电子探针对涂层进行显微组织分析。结果表明:在1050℃氧化1500h(热循环31次)后,热障涂层未出现脱落现象。沉积态CoCrAlY黏结层主要由β-CoAl相和γ-Co固溶体相组成;1050℃氧化后,在黏结层与陶瓷层界面生成热生长氧化物(TGO)层,黏结层逐渐发生退化,β-CoAl相逐渐转化为γ-CoNi固溶体;氧化1200h后,TGO/黏结层界面出现由活性元素效应导致的氧化物栓;TGO层皱曲行为导致TGO/陶瓷层界面出现微裂纹,并且该微裂纹沿界面横向扩展。TGO的厚度增长模式符合分段抛物线规律,初期氧化速率常数约为6.1×10-14cm2/s,氧化400h后,氧化速率常数减小,为3.5×10-14cm2/s。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任维鹏
李青
肖程波
宋尽霞
何利民
黄光宏
曹春晓
关键词 DZ466合金CoCrAlY黏结层热生长氧化物氧化速率常数    
Abstract:CoCrAlY bond coating and Y2O3 partially stabilized ZrO2 ceramic coating were deposited by electron beam physical vapor deposition (EB-PVD), and the cyclic oxidation behavior of the samples were measured at 1050℃. X-ray diffraction, scanning electron microscopy and electron probe microanalysis were employed to examine the microstructure. The results show that the thermal barrier coating (TBC) remains intact after exposure at 1050℃ for 1500h (31 cycles). As-deposited CoCrAlY bond coating consists of β-CoAl phase and γ-Co solid solution, thermally grown oxide (TGO) appears at the interface of bond coating and ceramic coating during exposure at 1050℃ and meanwhile degradation of bond coating occurs, β-CoAl phase gradually transforms into γ-Co solid solution. Oxide pegs form at the TGO/bong coating interface due to reactive elements effect after oxidation for 1200h. Rumpling of TGO induces micro-cracks at interface of TGO/ceramic coating, and the micro-cracks propagate along the interface. Thickness growth mode of TGO follows staged parabolic law, the initial oxidation rate constant is about 6.1×10-14cm2/s, after exposure for 400h, the oxidation rate constant decreases to 3.5×10-14cm2/s.
Key wordsDZ466 alloy    CoCrAlY    bond coating    thermally grown oxide    oxidation rate constant
收稿日期: 2014-01-05      出版日期: 2014-06-20
中图分类号:  TG174.451  
基金资助:国家863计划资助项目(2012AA03A511);工信部科技专项资助项目(2012ZX04007-021-03)
作者简介: 任维鹏 (1984- ),男,博士,主要研究方向为高温合金及其防护涂层,联系地址:北京81信箱1分箱(100095),E-mail:weipengrxx@126.com
引用本文:   
任维鹏, 李青, 肖程波, 宋尽霞, 何利民, 黄光宏, 曹春晓. DZ466合金热障涂层CoCrAlY黏结层1050℃氧化行为[J]. 材料工程, 2014, 0(6): 74-78.
REN Wei-peng, LI Qing, XIAO Cheng-bo, SONG Jin-xia, HE Li-min, HUANG Guang-hong, CAO Chun-xiao. Oxidation Behavior of CoCrAlY Bond Coating for Thermal Barrier Coating on DZ466 Super Alloy at 1050℃. Journal of Materials Engineering, 2014, 0(6): 74-78.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.06.014      或      http://jme.biam.ac.cn/CN/Y2014/V0/I6/74
[1] LELAIT L, ALPERINE S, DIOT C, et al. Thermal barrier coatings: microstructural investigation after annealing[J]. Mater Sci Eng A, 1989, 121(2):475-482.
[2] ROY N, GODIWALLA K M, CHAUDHURI S, et al. Simulation of bond coat properties in thermal barrier coatings during bending[J]. High Temp Mater Process, 2001, 20(2): 103-116.
[3] 徐前岗, 陆峰, 吴学仁, 等. NiCoCrAlYHf/EB-PVD热障涂层的热循环氧化行为[J]. 中国有色金属学报, 2004, 14(9): 1519-1524. XU Qian-gang, LU Feng, WU Xue-ren, et al.Thermal cyclic oxidation behavior of NiCoCrAlYHf/EB-PVD TBCs[J].The Chinese Journal of Nonferrous Metals, 2004, 14(9):1519-1524.
[4] KOKINI K, TAKEUCHI Y R. Initiation of surface cracks in multiplayer ceramics thermal barrier coatings under thermal loads[J]. Mater Sci Eng A, 1994, 189(1-2): 301-309.
[5] RAY A K, STEINBRECH R W. Crack propagation studies of thermal barrier coatings under bending[J]. J Eur Ceram Soc, 1999, 19(12): 2097-2109.
[6] LIH W, CHANG W, CHAO C H, et al. Effect of pre-aluminization on the properties of ZrO2-8wt%Y2O3/Co-29Cr-6Al-1Y thermal barrier coatings[J]. Oxid Met, 1992, 38(112): 99-124.
[7] CZECH N, KOLARIK V, QUADAKKERS J, et al. Oxide layer phase structure of NiCrAlY coatings[J]. Surf Eng, 1997, 13(5): 384-388.
[8] MUMM D R, EVANS A G. Mechanisms controlling the performance and durability of thermal barrier coatings[J]. Key Eng Mater, 2001, 197(1): 199-230.
[9] PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(4): 280-284.
[10] MILLER R A. Current status of thermal barrier coatings-an overview[J]. Surf Coat Technol, 1987, 30(1):1-11.
[11] MILLER R A. Thermal barrier coatings for aircraft engines: history and directions[J]. J Thermal Spray Tech, 1997, 6 (1):35-42.
[12] DMITRY N, VLADIMIR S, LORENS S, et al. Failure mechanisms of thermal barrier coatings on MCrAlY-type bond coats associated with the formation of the thermally grown oxide[J]. J Mater Sci, 2009, 44(7):1687-1703.
[13] MANAP A, NAKANO A, OGAWA K. The protectiveness of thermally grown oxides on cold sprayed CoNiCrAlY bond coat in thermal barrier coating[J]. J Thermal Spray Tech, 2012, 21(3-4): 586-596.
[14] LIANG T Q, GUO H B, PENG H, et al. Microstructural evolution of CoCrAlY bond coat on Ni-based superalloy DZ 125 at 1050 ℃[J]. Surf Coat Technol, 2011, 205(19): 4374-4379.
[15] PENG H, GUO H B, H E J, et al. Cyclic oxidation and diffusion barrier behaviors of oxides dispersed NiCoCrAlY coatings[J]. J Alloy Compd, 2010, 502(2): 411-416.
[16] TAWANCY H M, SRIHAR N, ABBAS N M, et al. Comparative thermal stability characteristics and isothermal oxidation behavior of an aluminized and a Pt-aluminized Ni-base superalloy[J]. Scripta Met et Materialia, 1995, 33(9):1431-1438.
[17] HOU P Y, STRINGER J. The effect of reactive element additions on the selective oxidation, growth and adhesion of chromia scales[J]. Mater Sci Eng A, 1995, 202(1-2): 1-10.
[18] SCHULZ U, MENZEBACH M, LEYENS C, et al. Influence of substrate material on oxidation behavior and cyclic lifetime of EB-PVD TBC systems[J]. Surface and Coatings Technology, 2001, 146-147: 117-123.
[19] GUO H B, CUI Y J, PENG H, et al. Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed beta-NiAl coatings for Hf-containing superalloy[J]. Corros Sci, 2010, 52(4):1440-1446.
[20] SCHILBE J E. Substrate alloy element diffusion in thermal barrier coatings[J]. Surf Coat Technol, 2000, 133-134:35-39.
[21] SHON Y H, KIM J H, JORDAN E H, et al. Thermal cycling of EB-PVD/MCrAlY thermal barrier coatings: I. Microstructural development and spallation mechanisms[J]. Surf Coat Technol, 2001, 146-147: 70-78.
[22] BALINT D S, HUTCHINSON J W, et al. Undulation instability of a compressed elastic film on a nonlinear creeping substrate[J]. Acta Mater, 2003, 51(13): 3965-3983.
[23] BALINT D S, XU T, HUTCHINSON J W, et al. Influence of bond coat thickness on the cyclic rumpling of thermally grown oxides[J]. Acta Mater, 2006, 54(7): 1815-1820.
[24] TOLPYGO V K, CLARKE D R. On the rumpling mechanism in nickel-aluminide coatings Part I: an experimental assessment[J]. Acta Mater, 2004, 52(17): 5115-5127.
[25] BALINT D S, KIM S S, LIU Y F, et al. Anisotropic TGO rumpling in EB-PVD thermal barrier coatings under in-phase thermomechanical loading[J]. Acta Mater, 2011, 59(6): 2544-2555.
[26] 韩萌, 黄继华, 陈树海. 热障涂层应力与失效机理若干问题的研究进展与评述[J]. 航空材料学报, 2013, 33(5): 83-98. HAN Meng, HUANG Ji-hua, CHEN Shu-hai.Research progress and review on key problems of stress and failure mechanism of thermal barrier coating[J].Journal of Aeronautical Materials, 2013, 33(5):83-98.
[27] EVANS H E, TAYLOR M P. Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems[J]. Oxid Met, 2001, 55(1-2):17-34.
[28] 李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001.36-41.
[1] 柯鹏, 蔡飞, 胡凯, 张世宏, 王硕煜, 朱广宏, 倪振航, 胡小红. 黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响[J]. 材料工程, 2019, 47(7): 144-150.
[2] 杜际雨, 李方义, 鹿海洋, 商建通, 李振. 大气等离子喷涂NiCrBSi-Mo/Ni涂层中黏结层对NiCrBSi-Mo复合工作层性能的影响[J]. 材料工程, 2017, 45(9): 86-92.
[3] 高俊国, 陆峰, 王长亮, 郭孟秋, 崔永静. 氧燃充枪比对爆炸喷涂CoCrAlYTa涂层抗氧化性能的影响[J]. 材料工程, 2013, 0(4): 28-33.
[4] 耿林, 孟庆武, 郭立新. 钛合金表面上两种镍基合金粉的激光熔覆研究[J]. 材料工程, 2005, 0(12): 45-47,52.
[5] 徐前岗, 唐建新, 陆峰, 吴学仁. EB-PVD热障涂层TGO中氧化物混合区的形成及其影响[J]. 材料工程, 2004, 0(7): 10-13,17.
[6] 宋尽霞, 李树索, 肖程波, 闻立时, 韩雅芳. IC6合金NiCoCrAlY涂层在制造过程中的修复研究[J]. 材料工程, 2002, 0(7): 20-23.
[7] 李伟光, 吴凤筠, 李建平. 含Hf高温防护涂层初步研究[J]. 材料工程, 1998, 0(7): 15-17.
[8] 吴凤筠, 李建平, 李伟光. 含Ta高温防护涂层初步研究[J]. 材料工程, 1998, 0(12): 8-10.
[9] 曾潮流, 沈华清, 吴维, 朱圣龙, 郭建亭. Ni3Al金属间化合物及溅射CoCrAlY涂层的高温热腐蚀[J]. 材料工程, 1994, 0(10): 35-37.
[10] 曾潮流, 张鉴清, 吴维韬. 溅射CoCrAlY涂层对NiAl金属间化合物热腐蚀性能的影响[J]. 材料工程, 1993, 0(4): 1-3,41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn