Oxidation Behavior of CoCrAlY Bond Coating for Thermal Barrier Coating on DZ466 Super Alloy at 1050℃
REN Wei-peng1, LI Qing1, XIAO Cheng-bo1, SONG Jin-xia1, HE Li-min2, HUANG Guang-hong2, CAO Chun-xiao1
1. Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Metal Corrosion and Surface Protection Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
Abstract:CoCrAlY bond coating and Y2O3 partially stabilized ZrO2 ceramic coating were deposited by electron beam physical vapor deposition (EB-PVD), and the cyclic oxidation behavior of the samples were measured at 1050℃. X-ray diffraction, scanning electron microscopy and electron probe microanalysis were employed to examine the microstructure. The results show that the thermal barrier coating (TBC) remains intact after exposure at 1050℃ for 1500h (31 cycles). As-deposited CoCrAlY bond coating consists of β-CoAl phase and γ-Co solid solution, thermally grown oxide (TGO) appears at the interface of bond coating and ceramic coating during exposure at 1050℃ and meanwhile degradation of bond coating occurs, β-CoAl phase gradually transforms into γ-Co solid solution. Oxide pegs form at the TGO/bong coating interface due to reactive elements effect after oxidation for 1200h. Rumpling of TGO induces micro-cracks at interface of TGO/ceramic coating, and the micro-cracks propagate along the interface. Thickness growth mode of TGO follows staged parabolic law, the initial oxidation rate constant is about 6.1×10-14cm2/s, after exposure for 400h, the oxidation rate constant decreases to 3.5×10-14cm2/s.
任维鹏, 李青, 肖程波, 宋尽霞, 何利民, 黄光宏, 曹春晓. DZ466合金热障涂层CoCrAlY黏结层1050℃氧化行为[J]. 材料工程, 2014, 0(6): 74-78.
REN Wei-peng, LI Qing, XIAO Cheng-bo, SONG Jin-xia, HE Li-min, HUANG Guang-hong, CAO Chun-xiao. Oxidation Behavior of CoCrAlY Bond Coating for Thermal Barrier Coating on DZ466 Super Alloy at 1050℃. Journal of Materials Engineering, 2014, 0(6): 74-78.
[1] LELAIT L, ALPERINE S, DIOT C, et al. Thermal barrier coatings: microstructural investigation after annealing[J]. Mater Sci Eng A, 1989, 121(2):475-482.
[2] ROY N, GODIWALLA K M, CHAUDHURI S, et al. Simulation of bond coat properties in thermal barrier coatings during bending[J]. High Temp Mater Process, 2001, 20(2): 103-116.
[3] 徐前岗, 陆峰, 吴学仁, 等. NiCoCrAlYHf/EB-PVD热障涂层的热循环氧化行为[J]. 中国有色金属学报, 2004, 14(9): 1519-1524. XU Qian-gang, LU Feng, WU Xue-ren, et al.Thermal cyclic oxidation behavior of NiCoCrAlYHf/EB-PVD TBCs[J].The Chinese Journal of Nonferrous Metals, 2004, 14(9):1519-1524.
[4] KOKINI K, TAKEUCHI Y R. Initiation of surface cracks in multiplayer ceramics thermal barrier coatings under thermal loads[J]. Mater Sci Eng A, 1994, 189(1-2): 301-309.
[5] RAY A K, STEINBRECH R W. Crack propagation studies of thermal barrier coatings under bending[J]. J Eur Ceram Soc, 1999, 19(12): 2097-2109.
[6] LIH W, CHANG W, CHAO C H, et al. Effect of pre-aluminization on the properties of ZrO2-8wt%Y2O3/Co-29Cr-6Al-1Y thermal barrier coatings[J]. Oxid Met, 1992, 38(112): 99-124.
[7] CZECH N, KOLARIK V, QUADAKKERS J, et al. Oxide layer phase structure of NiCrAlY coatings[J]. Surf Eng, 1997, 13(5): 384-388.
[8] MUMM D R, EVANS A G. Mechanisms controlling the performance and durability of thermal barrier coatings[J]. Key Eng Mater, 2001, 197(1): 199-230.
[9] PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(4): 280-284.
[10] MILLER R A. Current status of thermal barrier coatings-an overview[J]. Surf Coat Technol, 1987, 30(1):1-11.
[11] MILLER R A. Thermal barrier coatings for aircraft engines: history and directions[J]. J Thermal Spray Tech, 1997, 6 (1):35-42.
[12] DMITRY N, VLADIMIR S, LORENS S, et al. Failure mechanisms of thermal barrier coatings on MCrAlY-type bond coats associated with the formation of the thermally grown oxide[J]. J Mater Sci, 2009, 44(7):1687-1703.
[13] MANAP A, NAKANO A, OGAWA K. The protectiveness of thermally grown oxides on cold sprayed CoNiCrAlY bond coat in thermal barrier coating[J]. J Thermal Spray Tech, 2012, 21(3-4): 586-596.
[14] LIANG T Q, GUO H B, PENG H, et al. Microstructural evolution of CoCrAlY bond coat on Ni-based superalloy DZ 125 at 1050 ℃[J]. Surf Coat Technol, 2011, 205(19): 4374-4379.
[15] PENG H, GUO H B, H E J, et al. Cyclic oxidation and diffusion barrier behaviors of oxides dispersed NiCoCrAlY coatings[J]. J Alloy Compd, 2010, 502(2): 411-416.
[16] TAWANCY H M, SRIHAR N, ABBAS N M, et al. Comparative thermal stability characteristics and isothermal oxidation behavior of an aluminized and a Pt-aluminized Ni-base superalloy[J]. Scripta Met et Materialia, 1995, 33(9):1431-1438.
[17] HOU P Y, STRINGER J. The effect of reactive element additions on the selective oxidation, growth and adhesion of chromia scales[J]. Mater Sci Eng A, 1995, 202(1-2): 1-10.
[18] SCHULZ U, MENZEBACH M, LEYENS C, et al. Influence of substrate material on oxidation behavior and cyclic lifetime of EB-PVD TBC systems[J]. Surface and Coatings Technology, 2001, 146-147: 117-123.
[19] GUO H B, CUI Y J, PENG H, et al. Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed beta-NiAl coatings for Hf-containing superalloy[J]. Corros Sci, 2010, 52(4):1440-1446.
[20] SCHILBE J E. Substrate alloy element diffusion in thermal barrier coatings[J]. Surf Coat Technol, 2000, 133-134:35-39.
[21] SHON Y H, KIM J H, JORDAN E H, et al. Thermal cycling of EB-PVD/MCrAlY thermal barrier coatings: I. Microstructural development and spallation mechanisms[J]. Surf Coat Technol, 2001, 146-147: 70-78.
[22] BALINT D S, HUTCHINSON J W, et al. Undulation instability of a compressed elastic film on a nonlinear creeping substrate[J]. Acta Mater, 2003, 51(13): 3965-3983.
[23] BALINT D S, XU T, HUTCHINSON J W, et al. Influence of bond coat thickness on the cyclic rumpling of thermally grown oxides[J]. Acta Mater, 2006, 54(7): 1815-1820.
[24] TOLPYGO V K, CLARKE D R. On the rumpling mechanism in nickel-aluminide coatings Part I: an experimental assessment[J]. Acta Mater, 2004, 52(17): 5115-5127.
[25] BALINT D S, KIM S S, LIU Y F, et al. Anisotropic TGO rumpling in EB-PVD thermal barrier coatings under in-phase thermomechanical loading[J]. Acta Mater, 2011, 59(6): 2544-2555.
[26] 韩萌, 黄继华, 陈树海. 热障涂层应力与失效机理若干问题的研究进展与评述[J]. 航空材料学报, 2013, 33(5): 83-98. HAN Meng, HUANG Ji-hua, CHEN Shu-hai.Research progress and review on key problems of stress and failure mechanism of thermal barrier coating[J].Journal of Aeronautical Materials, 2013, 33(5):83-98.
[27] EVANS H E, TAYLOR M P. Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems[J]. Oxid Met, 2001, 55(1-2):17-34.
[28] 李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001.36-41.