Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (9): 39-44    DOI: 10.11868/j.issn.1001-4381.2014.09.007
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
纳米氧化铝颗粒对高性能环氧树脂玻璃化转变温度的影响
张宗华1, 刘刚2, 张晖3, 张忠3, 王小群1
1. 北京航空航天大学 材料科学与工程学院, 北京 100191;
2. 北京航空材料研究院 先进复合材料重点实验室, 北京 100095;
3. 国家纳米科学中心, 北京 100190
Influence of Nano-alumina Particles on Glass Transition Temperature of High-performance Epoxy Resin
ZHANG Zong-hua1, LIU Gang2, ZHANG Hui3, ZHANG Zhong3, WANG Xiao-qun1
1. Materials Science & Engineering School, Beihang University, Beijing 100191, China;
2. Science and Technology on Advanced Composites Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China;
3. National Center for Nanoscience and Technology, Beijing 100190, China
全文: PDF(2401 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用机械分散工艺制备了Al2O3/环氧复合材料,研究了颗粒含量和颗粒表面改性对复合材料玻璃化转变温度(Tg)的影响规律。结果表明:微米颗粒的加入并未改变环氧树脂的Tg,而纳米颗粒的加入则产生了较大影响。当未表面改性的Al2O3纳米颗粒含量超过10%(质量分数,下同)时,复合材料的Tg开始下降;纳米颗粒含量为18%时,相比纯树脂体系,复合材料的Tg下降了约25℃。经过辛基硅烷表面改性的纳米Al2O3颗粒与树脂的相容性得到改善,对体系的增黏效果减小,复合材料的Tg降低幅度较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宗华
刘刚
张晖
张忠
王小群
关键词 玻璃化转变温度纳米复合材料氧化铝环氧树脂    
Abstract:Alumina/epoxy composites were prepared by mechanical mixing technique. The effect of filler content and surface modification of the nano-alumina on the glass transition temperature (Tg) of epoxy composites was investigated. The result shows that the addition of micron-sized alumina particles does not change the Tg of epoxy polymer, but the unmodified nano-alumina affects the Tg of epoxy composites. There is a significant drop in Tg of the epoxy samples when the filler content is above 10% (mass fraction). At the filler content of 18%, the Tg of the nanocomposite sample declines by as much as 25℃ in comparison with that of the neat epoxy sample. Comparatively, the surface-modified nanoparticles have better compatibility with epoxy resin than the un-modified ones, and thus showing minor thickening effect.
Key wordsglass transition temperature    nanocomposite    alumina    epoxy resin
收稿日期: 2012-10-17      出版日期: 2014-09-20
中图分类号:  TB332  
引用本文:   
张宗华, 刘刚, 张晖, 张忠, 王小群. 纳米氧化铝颗粒对高性能环氧树脂玻璃化转变温度的影响[J]. 材料工程, 2014, 0(9): 39-44.
ZHANG Zong-hua, LIU Gang, ZHANG Hui, ZHANG Zhong, WANG Xiao-qun. Influence of Nano-alumina Particles on Glass Transition Temperature of High-performance Epoxy Resin. Journal of Materials Engineering, 2014, 0(9): 39-44.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.09.007      或      http://jme.biam.ac.cn/CN/Y2014/V0/I9/39
[1] WETZEL B, HAUPERT F, ZHANG Qiu-ming. Epoxy nanocomposites with high mechanical and tribological performance[J]. Composites Science and Technology, 2003, 63(14): 2055-2067.
[2] 王德中. 环氧树脂生产与应用[M]. 北京:化学工业出版社, 2001.WANG De-zhong. Production and Application of Epoxy Resin[M]. Beijing: Chemical Industry Press, 2001.
[3] RAGOSTA G, ABBATE M, MUSTO P, et al. Epoxy-silica particulate nanocomposites:chemical interactions,reinforcement and fracture toughness[J]. Polymer, 2005, 46(23): 10506-10516.
[4] 孙曼灵. 环氧树脂应用原理与技术[M]. 北京:机械工业出版社, 2002.SUN Man-ling. Application of the Principles and Techniques of Epoxy Resin[M]. Beijing: China Machine Press, 2002.
[5] 张小华,徐伟箭. 无机纳米粒子在环氧树脂增韧改性中的应用[J]. 高分子通报,2005, (12):100-104.ZHANG Xiao-hua, XU Wei-jian. Application of inorganic nano-particles in epoxy resin toughening [J]. Polymer Bulletin,2005, (12):100-104.
[6] 李仙会,胡晓丹,陈瑞珠. 环氧树脂改性研究进展[J]. 热固性树脂, 2003, 18(3): 27-31.LI Xian-hui, HU Xiao-dan, CHEN Rui-zhu. Recent progress in modification of epoxy resin[J]. Thermosetting Resin, 2003, 18(3): 27-31.
[7] MA J, MO M-S, DU X-S, et al. Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems[J]. Polymer, 2008, 49(16): 3510-3523.
[8] KANG S, HONG S I, CHOE C-R, et al. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process[J]. Polymer, 2001, 42(3): 879-887.
[9] WETZEL B, ROSSO P, HAUPERT F, et al. Epoxy nanocomposites-fracture and toughening mechanisms[J]. Engineering Fracture Mechanics, 2006, 73(16): 2375-2398.
[10] ASH B J, SCHADLER L S, SIEGEL R W. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites[J]. Materials Letters, 2002, 55(1): 83-87.
[11] MIYAGAWA H, RICH M J, DRZAL L T. Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers[J]. Thermochimica Acta, 2006, 442(1-2): 67-73.
[12] SUN Y, ZHANG Z, MOON K-S, et al. Glass transition and relaxation behavior of epoxy nanocomposites[J]. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(21): 3849-3858.
[13] PETHRICK R A, MILLER C, RHONEY I. Influence of nanosilica particles on the cure and physical properties of an epoxy thermoset resin[J]. Polymer International, 2010, 59(2): 236-241.
[14] HAN J T, CHO K. Nanoparticle-induced enhancement in fracture toughness of highly loaded epoxy composites over a wide temperature range[J]. Journal of Materials Science, 2006, 41(13): 4239-4245.
[15] ZHAO H, LI R K Y. Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(4): 602-611.
[16] BARRAU S, DEMONT P, MARAVAL C, et al. Glass transition temperature depression at the percolation threshold in carbon nanotube-epoxy resin and polypyrrole-epoxy resin composites[J]. Macromolecular Rapid Communications, 2005, 26(5): 390-394.
[17] ZHANG G, RASHEVA Z, KARGER-KOCSIS J, et al. Synergetic role of nanoparticles and micro-scale short carbon fibers on the mechanical profiles of epoxy resin[J]. Exp Polym Lett, 2011, 5(10):859-872.
[18] LIU G, ZHANG H, ZHANG D J, et al. On depression of glass transition temperature of epoxy nanocomposites[J]. Journal of Materials Science, 2012, 47(19):6891-6895.
[1] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[2] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[3] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[4] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[5] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[6] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[7] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[8] 孙志强, 张剑, 杨小波, 王华栋, 韩耀, 吕毅, 李淑琴. 球形纳米氧化铝颗粒制备微晶陶瓷及传质动力学研究[J]. 材料工程, 2020, 48(3): 127-133.
[9] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[10] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[11] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[12] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[13] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[14] 贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
[15] 余煜玺, 马锐, 王贯春, 张瑞谦, 彭小明. 高比表面积、低密度块状Al2O3气凝胶的制备及表征[J]. 材料工程, 2019, 47(12): 136-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn