Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (1): 59-65    DOI: 10.11868/j.issn.1001-4381.2015.01.011
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
V对MGH956合金TIG原位合金化焊接接头组织与性能的影响
罗雅1, 雷玉成1,2, 龚晨诚1, 梁申勇1
1. 江苏大学 材料科学与工程学院, 江苏 镇江 212013;
2. 江苏省高端结构材料重点实验室, 江苏 镇江 212013
Effects of V on Microstructure and Properties of MGH956 Alloy Welding Joints with TIG In -situ Alloying
LUO Ya1, LEI Yu-cheng1,2, GONG Chen-cheng1, LIANG Shen-yong1
1. School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China;
2. Jiangsu Province Key Laboratory of High-end Structural Materials, Zhenjiang 212013, Jiangsu, China
全文: PDF(5310 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为改善MGH956合金TIG焊焊缝的组织与性能,采用原位合金化方法对该合金进行TIG焊接.对比不同含量V的填充材料对焊缝组织与性能的影响,并讨论了V的作用机理.OM和SEM结果表明:填充材料中添加不同含量的V后,组织出现了不同程度的细化及均匀化,当wV=1.5%时,晶粒最细、尺寸均匀,同时焊缝中的气孔量有所减少;对焊缝中的颗粒进行物相鉴定可知,除了有YAlO3, TiC和TiN颗粒生成外还有(Ti,V)C复合颗粒生成.由TEM观察显示wV=1.5%时,焊缝内的碳化物颗粒与焊缝基体结合良好,且wV=1.5%时,接头强度最高,并实现了接头断裂方式由完全脆性断裂转变为韧性断裂.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗雅
雷玉成
龚晨诚
梁申勇
关键词 MGH956合金原位合金化焊接V组织性能    
Abstract:In order to improve the microstructure and properties of MGH956 alloy TIG weld, the alloy was welded with TIG in -situ alloying. The effects of V on the microstructure and properties of MGH956 alloy weld were studied, and the mechanism of V was discussed. The OM and SEM results show that the microstructure of the welds are refined and homogenized with different content of V added in the consumables, and as wV=1.5%, the grain size is the smallest and the most uniform. At the same time the weld porosity is the lowest. The EDS results show that there are (Ti, V) C particles generated in addition to YAlO3, TiC, TiN particles in the weld. It can be observed by TEM that the interface between carbide particles and the matrix is clean and joins well. The strength of the weld is the highest when wV=1.5%, and the fracture mode of the joints changes from complete brittle fracture to ductile fracture.
Key wordsMGH956 alloy    in-situ alloying welding    V    microstructure    property
收稿日期: 2013-05-20      出版日期: 2015-01-20
中图分类号:  TG132.3  
基金资助:国家自然科学基金资助项目(51075191);江苏省高校博士创新基金项目(CXZZ11_0556);江苏高校优势学科建设工程资助项目(PAPD)
通讯作者: 雷玉成(1962-),男,教授,博士生导师,主要从事先进连接技术等方面的研究,联系地址:江苏省镇江市学府路301号江苏大学材料学院(212013),yclei@ujs.edu.cn     E-mail: yclei@ujs.edu.cn
引用本文:   
罗雅, 雷玉成, 龚晨诚, 梁申勇. V对MGH956合金TIG原位合金化焊接接头组织与性能的影响[J]. 材料工程, 2015, 43(1): 59-65.
LUO Ya, LEI Yu-cheng, GONG Chen-cheng, LIANG Shen-yong. Effects of V on Microstructure and Properties of MGH956 Alloy Welding Joints with TIG In -situ Alloying. Journal of Materials Engineering, 2015, 43(1): 59-65.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.01.011      或      http://jme.biam.ac.cn/CN/Y2015/V43/I1/59
[1] OLIERA P, BOUGAULT A, ALAMO A, et al. Effects of the forming processes and Y2O3 content on ODS-Eurofer mechanical properties[J]. Journal of Nuclear Materials, 2009, 386-388: 561-563.
[2] SHIGEHARU U, MASAYUKI F. Perspective of ODS alloys application in nuclear environments[J]. Journal of Nuclear Materials, 2002, 307-311(1): 749-757.
[3] De CASTROA V, LEGUEY T, MUÑOZ A, et al. Microstructural characterization of Y2O3 ODS-Fe-Cr model alloys[J]. Journal of Nuclear Materials, 2009, 386-388: 449-452.
[4] MUKHOPADHYAY D K, FROES F H, GELLES D S, et al. Development of oxide dispersion strengthened ferritic steels for fusion[J]. Journal of Nuclear Materials, 1998, 258-263: 1209-1215.
[5] 淮军锋, 郭万林, 李天文, 等.氧化物弥散强化高温合金MGH956的基本焊接性研究[J]. 材料工程,2008,(9):52-55.HUAI J F, GUO W L, LI T W, et al. Weldabilities of the oxide-dispersion-strengthened superalloy MGH956[J]. Journal of Materials Engineering, 2008, (9): 52-55.
[6] 田耘, 郭万林, 杨峥, 等.MGH956合金板材电子束焊和氩弧焊的接头组织与性能研究[J]. 航空材料学报, 2011,31(4):33-38.TIAN Y, GUO W L, YANG Z, et al. Microstructures and properties of MGH956 sheet joints with EB and TIG welding methods [J]. Journal of Aeronautical Materials, 2011, 31(4):33-38.
[7] 龚伟, 王一三, 王静. 原位烧结合成(Ti, V)C颗粒增强铁基复合材料的微观结构研究[J].粉末冶金技术, 2007,25(1): 35-38.GONG W, WANG Y S, WANG J. Microstructure study on in situ sintering synthesis of (Ti, V)C/ Fe composites[J]. Powder Metallurgy Technology, 2007, 25(1): 35-38.
[8] 吴朝锋, 马明星, 刘文今, 等. 激光原位制备复合碳化物颗粒增强铁基复合涂层及其耐磨性的研究[J].金属学报, 2009, 45(8): 1013-1018.WU C F, MA M X, LIU W J, et al. Study on wear resistance of laser cladding Fe-based composite coatings reinforced by in-situ multiple carbide particles[J]. Acta Metallurgica Sinica,2009, 45(8): 1013-1018.
[9] RUNE L, TADEUSZ S, STANISLAW Z, et al. The role of vanadium in microalloyed steels[D]. Stokholm: Swedish Institute for Metals Research, 1999.
[10] 刘海峰, 刘耀辉, 于思荣. 原位合成VC颗粒增强钢基复合材料组织及其形成机理[J]. 复合材料学报, 2001, 18(4): 58-63. LIU H F, LIU Y H, YU S R. Microstructure of in situ VC particulates reinforced steel matrix composite and its forming mechanism[J]. Acta Materiae Compositae Sinica, 2001, 18(4): 58-63.
[11] 倪自飞, 孙扬善, 薛烽. 原位VC颗粒弥散强化304不锈钢的组织与性能[J].东南大学学报, 2010,40(6): 1308-1322. NI Z F, SUN Y S, XUE F. Microstructure and properties of in-situ VC dispersion-reinforced 304 stainless steel[J]. Journal of Southeast University, 2010, 40(6): 1308-1322.
[12] GLUSHKOVA V B, KRZHIZHANOVSKAYA V A, EGOROVA O N, et al. Mechanism of YAG synthesized by the solid-state reaction method[J]. Inorganic Materials, 1983, 19: 80-84.
[13] 姜茂发, 王荣, 李春龙.钢中稀土与铌、钒、钛等微合金元素的相互作用[J].稀土, 2003, 24(5): 1-3. JIANG M F, WANG R, LI C L. Interaction of rare earths and micro alloying elements Nb, V and Ti in steel[J]. Chinese Rare Earths, 2003, 24(5):1-3.
[14] 梁连科.金属钒、碳化钒 (VC) 和氮化钒 (VN) 制备过程的热力学分析[J]. 钢铁钒钛, 1999, 20(3): 43-46. LIANG L K. Thermodynamic analysis of preparation of metallic vanadium (V), vanadium carbide (VC) and vanadium nitride (VN)[J]. Iron Steel Vanadium Titanium, 1999, 20(3): 43-46.
[15] 杜宝帅, 李清明, 王新洪, 等. 激光熔覆原位自生TiC-VC颗粒增强Fe基金属陶瓷涂层[J].焊接学报, 2007, 28(4): 65-68. DU B S, LI Q M, WANG X H, et al. In situ synthesis of TiC/VC particles reinforced Fe based metal matrix composite coating by laser cladding[J]. Transactions of the China Welding Institution, 2007, 28(4):65-68.
[16] SEPULVEDA R, ARENAS F. TiC-VC-Co: a study on its sintering and microstructure[J]. International Journal of Refractory Metals & Hard Materials, 2001, 19(4): 389-396.
[17] 雷玉成, 任闻杰, 谢伟峰, 等.氧化物弥散强化MGH956合金TIG焊缝气孔问题分析[J].焊接学报, 2011, 32(11): 1-4. LEI Y C, REN W J, XIE W F, et al. Study on pores in TIG welding of oxide dispersion strengthened(ODS) alloy MGH956[J].Transactions of the China Welding Institution,2011,32 (11): 1-4.
[18] 雍岐龙, 孙新军, 郑磊, 等. 钢铁材料中第二相的作用[J].科技创新导报, 2009,(8): 2-3. YONG Q L, SUN X J, ZHENG L, et al. Role of second phases in the steel[J]. Science and Technology Innovation Herald, 2009, (8): 2-3.
[1] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[2] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[3] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[4] 孙昊, 贾凯波, 赵凤光, 张羊换, 任慧平. Mg22Y2Ni10Cu2储氢合金的放氢性能[J]. 材料工程, 2020, 48(9): 100-106.
[5] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[6] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[7] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[8] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[9] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[10] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[11] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[12] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[13] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[14] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[15] 杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光. 一种第三代单晶高温合金中高温横向持久性能[J]. 材料工程, 2020, 48(7): 139-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn