Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (3): 35-41    DOI: 10.11868/j.issn.1001-4381.2015.03.007
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Sb掺杂ZnTe薄膜结构及其光电性能
邹凯1,2, 李蓉萍1,2, 刘永生1,2, 田磊1, 冯松1
1. 内蒙古大学 物理科学与技术学院, 呼和浩特 010021;
2. 内蒙古自治区高等学校半导体光伏技术重点实验室, 呼和浩特 010021
Structure and Photoelectric Properties of Sb-doped ZnTe Thin Films
ZOU Kai1,2, LI Rong-ping1,2, LIU Yong-sheng1,2, TIAN Lei1, FENG Song1
1. School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China;
2. Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region, Hohhot 010021, China
全文: PDF(2054 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用真空蒸发工艺在玻璃衬底上制备了ZnTe和掺Sb-ZnTe多晶薄膜,并在氮气气氛中对薄膜进行热处理。分别利用XRD、SEM、紫外-可见分光光度计、霍尔效应测试仪对薄膜的晶体结构、表面形貌、元素组成以及光学、电学性能进行表征,研究Sb掺杂量和热处理对薄膜性能的影响。结果表明: 未掺杂薄膜为沿(111)晶面择优生长的立方相闪锌矿结构,导电类型为P型。Sb掺杂并未改变ZnTe薄膜晶体结构和导电类型,但衍射峰强度降低;Sb含量直接影响着Sb在ZnTe中的存在形式,掺Sb后抑制了薄膜中Te和Zn的结合,使薄膜中Te的含量增加;室温下薄膜的光学透过率和光学带隙取决于掺Sb浓度和退火温度,并且掺Sb后ZnTe薄膜的载流子浓度显著增加,导电能力明显增强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹凯
李蓉萍
刘永生
田磊
冯松
关键词 ZnTe薄膜Sb掺杂真空蒸发光学性能电学性能    
Abstract:ZnTe and Sb-ZnTe polycrystalline thin films were prepared by vacuum evaporation on glass substrates and annealed in nitrogen environment. By using XRD, SEM, UV-VIS spectrophotometer and Hall effect measurements, the crystal structure, surface morphology, elemental composition, optical and electrical properties of the thin films were characterized, respectively, and the effects of Sb-doping amounts and heat treatment on the performance of the films were studied. The results show that pure ZnTe film is the cubic structure and preferentially orients in the (111) direction and its conductive type is P type. Sb-doping does not change the structure and conductive type of the films, but the intensity of diffraction peaks is lower than that of pure ZnTe films; the concentration of Sb directly affects the form of Sb in the ZnTe. Sb doping inhibits the combination of Te and Zn, and leads to the increase of Te in the films. In addition, the optical transmittance and optical band gap of the films depend on the concentration of Sb and annealing temperature, and Sb-doping can also result in an obvious increasing of carrier concentration and reduce the resistivity, which significantly enhance the conductivity of the films.
Key wordsZnTe thin film    Sb-doped    vacuum evaporation    optical property    electrical property
收稿日期: 2013-04-11      出版日期: 2015-03-20
中图分类号:  O484.4  
基金资助:内蒙古自治区教育厅项目(NJ09006)
通讯作者: 邹凯(1988-),男,硕士,主要从事半导体材料及太阳能电池方面的研究,联系地址:内蒙古呼和浩特市如意开发新区沙尔沁工业园 内蒙古日月太阳能科技有限责任公司(010111),zoukai19880607@163.com     E-mail: zoukai19880607@163.com
引用本文:   
邹凯, 李蓉萍, 刘永生, 田磊, 冯松. Sb掺杂ZnTe薄膜结构及其光电性能[J]. 材料工程, 2015, 43(3): 35-41.
ZOU Kai, LI Rong-ping, LIU Yong-sheng, TIAN Lei, FENG Song. Structure and Photoelectric Properties of Sb-doped ZnTe Thin Films. Journal of Materials Engineering, 2015, 43(3): 35-41.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.03.007      或      http://jme.biam.ac.cn/CN/Y2015/V43/I3/35
[1] ACHARYA K P, ERLACHER A, ULLRICH B, et al. Optoelectronic properties of ZnTe/Si heterostructures formed by nanosecond laser deposition at different Nd:YAG laser lines[J]. Thin Solid Films, 2007, 515(7-8): 4066-4069.
[2] DAVAMI K, KANG D, LEE J S, et al. Synthesis of ZnTe nanostructures by vapor-liquid-solid technique[J]. Chem Phys Lett, 2011, 507(1-3): 208.
[3] GUO Q, KUME Y, FUKUHARA Y, et al. Observation of ultra-broadband terahertz emission from ZnTe films grown by metaloganic vapor epitaxy[J]. Solid State Commun, 2007, 141(4): 188-191.
[4] SPATH B, FRITSCHE J, SAUBERLICH F, et al. Studies of sputtered ZnTe films as interlayer for the CdTe thin film solar cell[J]. Thin Solid Films, 2005, 480: 204-207.
[5] FENG L H, WU L L, LEI Z, et al.Studies of key technologies for large area CdTe thin film solar cells[J]. Thin Solid Films, 2007, 515(15): 5792-5797.
[6] MEYERS P V. Polycrystalline Cadmium Telluride n-i-p Solar Cell[R]. SERL Subcontract Report ZL-7-06031-2, Final Report, Solar Energy Research Institute, 1990.
[7] AQILI A K S, SALEH A J, ALI Z, et al. Ag doped ZnTe films prepared by closed space sublimation and an ion exchange Process[J]. Journal of Alloys and Compounds, 2012, 520: 83-88.
[8] LI S Y, JIANG Y, WU D, et al. Enhanced p-type conductivity of ZnTe nanoribbons by nitrogen doping[J]. J Phys Chem C, 2010, 114(17), 7980-7985.
[9] HUO H B, DAI L, LIU C, et al. Electrical properties of Cu doped p-ZnTe nanowires[J]. Nanotechnology, 2006, 17(24): 5912-5915.
[10] TANAKA T, HAYASHIDA K, NISHIO M, et al. Photoluminescence of iodine-doped ZnTe homoepitaxial layer grown by metalorganic vapor phase epitaxy[J]. J Appl Phys, 2003, 93(9): 5302-5306.
[11] TANAKA T, HAYASHIDA K, NISHIO M, et al. Photoluminescence of Cl-doped ZnTe epitaxial layer grown by atmospheric pressure metalorganic vapor phase epitaxy[J]. J Appl Phys, 2003, 94(3): 1527-1530.
[12] LUO M, VANMIL B L, TOMPKINS R P, et al. Photoluminescence of ZnTe and ZnTe:Cr grown by molecular-beam epitaxy[J]. J Appl Phys, 2005, 97(1): 013518.
[13] 李蓉萍, 李琦. 掺Sb-CdTe薄膜的结构及其光学特性研究[J]. 真空科学与技术, 2002, 22(6): 474-476. LI R P, LI Q. Properties of Sb-doped CdTe thin films[J]. Chinese Journal of Vacuum Science and Technology, 2002, 22(6): 474-476.
[14] WU D, JIANG Y, ZANG Y G, et al. Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons[J]. J Mater Chem, 2012, 22(13): 6206-6212.
[15] BARATI A, KLEIN A, JAEGERMANN W, et al. Deposition and characterization of highly p-type antimony doped ZnTe thin films[J]. Thin Solid Films, 2009, 517(7): 2149-2152.
[16] MAHALINGAM T, JOHN V S, RAJENDRAN S, et al. Annealing studies of electrodeposited zinc telluride thin films[J]. Surface and Coatings Technology, 2002, 155(2-3): 245-249.
[17] 蔡道林, 郑家贵, 冯良桓, 等. ZnTe薄膜特性研究[J]. 材料科学与工艺, 2004, 12(5):479-482. CAI D L, ZHENG J G, FENG L H, et al. Study the characteristics of ZnTe films[J]. Materials Science and Technology, 2004, 12(5):479-482.
[18] RAO G K, BANGERA K V, SHIVAKUMAR G K. Studies on the photoconductivity of vacuum deposited ZnTe thin films[J]. Materials Research Bulletin, 2010, 45 (10): 1357-1360.
[19] 刘恩科, 朱秉升, 罗晋生, 等. 半导体物理学[M]. 4版.北京:国防工业出版社, 2010.106-108, 256-258. LIU E K, ZHU B S, LUO J S, et al. Semiconductor Physics[M].Forth ed. Beijing:National Defense Industry Press, 2010.106-108, 256-258.
[1] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[2] 杜宏艳, 戚宇帆, 吴晨雪, 刘玥君, 梁丽萍, 郭文英, 张子栋. SiO2光子晶体结构色薄膜的制备与光学性能研究[J]. 材料工程, 2019, 47(12): 111-117.
[3] 梁家浩, 魏智强, 朱学良, 张旭东, 武晓娟, 姜金龙. 尖晶石结构Ni掺杂ZnFe2O4纳米颗粒的性能表征[J]. 材料工程, 2019, 47(10): 113-119.
[4] 王昊, 张辉, 张继华, 赵云峰. 非共价键表面修饰的石墨烯/聚合物复合材料研究进展[J]. 材料工程, 2018, 46(7): 44-52.
[5] 陈义川, 胡跃辉, 胡克艳, 张效华, 童帆, 帅伟强, 劳子轩. 共掺浓度对Na-Al共掺杂ZnO薄膜微观结构和光电性能的影响[J]. 材料工程, 2018, 46(6): 51-56.
[6] 武美荣, 魏智强, 武晓娟, 杨华, 姜金龙. Zn1-xMnxS稀磁半导体的合成与光学性能[J]. 材料工程, 2017, 45(7): 54-59.
[7] 赵博, 李晓刚, 高瑾, 杜翠薇. 电场诱导对不饱和聚酯树脂/炭纤维/纳米炭黑复合材料性能的影响[J]. 材料工程, 2013, 0(4): 85-91.
[8] 陈先华. 孪晶对Cu的力学和电学性能影响的研究进展[J]. 材料工程, 2011, 0(9): 87-91.
[9] 崔旭梅, 黄载春, 陈孝娥. 稀土元素掺杂TiO2薄膜的制备及其光学性能研究[J]. 材料工程, 2008, 0(12): 55-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn