Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (9): 46-52    DOI: 10.11868/j.issn.1001-4381.2015.09.008
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
熔接痕性能评价的WSt模型及其验证
吴雄喜1,2, 刘健1
1. 浙江工业职业技术学院, 浙江 绍兴 312000;
2. 西北工业大学机电学院, 西安 710072
WSt Model of Estimating Weld Line Performance and Its Verification
WU Xiong-xi1,2, LIU Jian1
1. Zhejiang Industry Polytechnic College, Shaoxing 312000, Zhejiang, China;
2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(2870 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 提出采用熔体汇合角度、流动前沿温度、压力三个参数来表征熔接痕,构建了评价熔接痕性能优劣的WSt模型,基于此模型对比了相同工艺参数下快速变模温成型(Rapid Heat Cycle Molding,RHCM)与普通成型的熔接痕质量,并以导风板为对象进行了生产验证。结果表明:快速变模温成型熔接痕的整体性能由普通成型的0.681提高到0.819,提高了20.3%;RHCM成型导风板熔接痕处的拉伸强度由普通成型的45.3MPa提高到 53.8 MPa,强度提高了18.8%,与WSt模型所预测的20.3%接近。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴雄喜
刘健
关键词 熔体汇合角度流动前沿温度压力WSt模型RHCM    
Abstract:The parameters of melt converging angle, flow front temperature, pressure were proposed to characterize the performance of weld line and the WSt model was established to judge the quality of weld line. Based on this, the quality of weld line was contrasted between ordinary molding and rapid heat cycle molding(RHCM) under the same processing parameters. The wind deflector was produced to verification.The results indicate that the weld line performance increases from 0.681 to 0.819, with an increase of 20.3%. And through the tensile experiment of the wind deflector, it can be found that the tensile strength of wind deflector increases from 45.3MPa to 53.8MPa. The strength increases by 18.8%, which is close to 20.3%, as predicted by WSt model.
Key wordsmelt converging angle    flow front temperature    pressure    WSt model    RHCM
收稿日期: 2014-06-24      出版日期: 2015-09-26
中图分类号:  TQ320.66  
通讯作者: 吴雄喜(1976—),男,副教授,主要从事先进加工技术及数值模拟研究,联系地址:浙江省绍兴市镜湖新区曲屯路151号浙江工业职业技术学院教务处(312000),E-mail:nwpu960196@163.com     E-mail: nwpu960196@163.com
引用本文:   
吴雄喜, 刘健. 熔接痕性能评价的WSt模型及其验证[J]. 材料工程, 2015, 43(9): 46-52.
WU Xiong-xi, LIU Jian. WSt Model of Estimating Weld Line Performance and Its Verification. Journal of Materials Engineering, 2015, 43(9): 46-52.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.09.008      或      http://jme.biam.ac.cn/CN/Y2015/V43/I9/46
[1] KOVACS J G, SIKLO B. Experimental validation of simulated weld line formation in injection moulded parts[J]. Polymer Testing, 2010, 29(7):910-914.
[2] OZCELIK B, KURAM E, TOPAL M M. Investigation the effects of obstacle geometries and injection molding parameters on weld line strength using experimental and finite element methods in plastic injection molding[J]. International Communications in Heat and Mass Transfer, 2012, 39(2):275-281.
[3] WANG G L,ZHAO G Q,WANG X X. Effects of cavity surface temperature on mechanical properties of specimens with and without a weld line in rapid heat cycle molding[J]. Materials and Design, 2013, 46(4):457-472.
[4] CHEN S C, JONG W R, CHANG J A. Dynamic mold surface temperature control using induction heating and its effects on the surface appearance of weld line[J]. Journal of Applied Polymer Science, 2006, 101(2):1174-1180.
[5] LI H, GUO Z, LI D. Reducing the effects of weld lines on appearance of plastic products by Taguchi experimental method[J]. International Journal of Advanced Manufacturing Technology, 2007, 32(9-10):927-931.
[6] CHEN C S, CHEN T J, CHEN R D, et al. Investigation on the weld line strength of thin-wall injection molded ABS parts[J]. International Communications in Heat and Mass Transfer, 2007, 34 (4):448-455.
[7] LIU S J, WU J Y, CHANG J H. An experimental matrix design to optimize the weld line strength in injection molded parts[J]. Polymer Engineering and Science, 2000, 40(5):1256-1262.
[8] WU C H, LIANG W J. Effects of geometry and injection molding parameters on weld line strength[J]. Polymer Engineering and Science, 2005, 45(7):1021-1030.
[9] CHEN S C, CHANG Y, CHANG Y P, et al. Effect of cavity surface coating on mold temperature variation and the quality of injection molded parts[J]. International Communications in Heat and Mass Transfer, 2009, 36(10):1030-1035.
[10] OZCELIK B. Optimization of injection parameters for mechanical properties of specimens with weld line of polypropylene using Taguchi method[J]. International Communications in Heat and Mass Transfer, 2011, 38(8):1067-1072.
[11] HASHEMI S. Effect of temperature on weldline integrity of injection moulded short glass fibre and glass bead filled ABS hybrids[J]. Polymer Testing, 2010, 29(3):327-336.
[12] BIEROGEL C, GRELLMANNA W, FAHNERT T, et al. Material parameters for the evaluation of PA welds using laser extensometry[J]. Polymer Testing, 2006, 25(8):1024-1037.
[13] XIE L, ZIEGMANN G. Influence of processing parameters on micro injection molded weld line mechanical properties of polypropylene (PP)[J]. Microsystem Technologies, 2009, 15(9): 1427-1435.
[14] 肖长江,刘春太,申长雨. 注塑制件熔接痕的形成、性能和预测[J]. 工程塑料应用,2003, 31(3):17-20. XIAO Chang-jiang, LIU Chun-tai, SHEN Chang-yu. Formation, performance and prediction of weld mark in injection molding[J]. Journal of Engineering Plastics Application, 2003, 31(3):17-20.
[15] FÉLIX M, ROMERO A, MARTÍN-ALFONSO J E, et al. Development of crayfish protein-PCL biocomposite material processed by injection moulding. Composites Part B: Engineering, 2015, 78(1):291-297.
[16] XIAO C L, HUANG H X. Development of a rapid thermal cycling molding with electric heating and water impingement cooling for injection molding applications. Applied Thermal Engineering, 2014, 73(1):712-722.
[17] ZHAO G Q, WANG G L, GUAN Y J, et al. Research and application of a new rapid heat cycle molding with electric heating and coolant cooling to improve the surface quality of large LCD TV panels[J]. Polymers for Advanced Technologies, 2011, 22(5):476-487.
[18] 王桂龙,赵国群,李辉平,等.基于CAE的大型LCD注塑面板变模温设计与分析[J]. 材料工程, 2009, (9):24-28. WANG Gui-long, ZHAO Guo-qun, LI Hui-ping, et al. Design and analysis of variotherm injection molding of large LCD panel based on CAE[J]. Journal of Materials Engineering, 2009, (9):24-28.
[1] 王鹏, 张瑞英, 韩小伟, 刘天丽, 杨森. 不同压制压力制备的Al-TiO2-C细化剂对ZL101合金细化效果的影响[J]. 材料工程, 2018, 46(8): 84-90.
[2] 王韬, 葛勇, 郎建林, 孙琦伟, 厉蕾, 颜悦. 注射压缩成型与常规注射成型的模腔压力对比分析[J]. 材料工程, 2018, 46(4): 127-133.
[3] 尹建成, 杨环, 刘英莉, 陈业高, 张八淇, 钟毅. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程, 2018, 46(11): 102-109.
[4] 李佳, 盛光敏, 黄利. Ti/Nb作中间层脉冲加压扩散连接TiC金属陶瓷与不锈钢[J]. 材料工程, 2017, 45(3): 54-59.
[5] 程勇, 苏勋家, 侯根良, 史子良, 钟长荣, 邢亚坤. 自蔓延高温合成/单向加压法制备ZrC陶瓷研究[J]. 材料工程, 2017, 45(1): 1-6.
[6] 任重, 黄兴元, 柳和生. 高聚物熔体锥形收敛流场分布的影响因素数值分析[J]. 材料工程, 2016, 44(3): 52-59.
[7] 张植权, 周邦新, 蔡琳玲, 王均安, 刘文庆. 利用APT研究RPV模拟钢中相界面原子偏聚特征[J]. 材料工程, 2014, 0(9): 89-93.
[8] 李波, 康永林, 朱国明, 高永坚. 基板强度对汽车用合金化热镀锌板摩擦因数的影响[J]. 材料工程, 2012, 0(8): 14-18.
[9] 樊梦婷, 孙明月, 李殿中. 大型压力机模座热处理过程模拟及工艺优化[J]. 材料工程, 2011, 0(11): 44-50.
[10] 喇培清, 吕蕊娇, 王利. 工艺参数对块体纳米晶Fe3Al材料组织和性能的影响[J]. 材料工程, 2010, 0(7): 18-23.
[11] 张宝艳, 陈祥宝, 周正刚. 消泡剂对真空压力成型复合材料质量与性能的影响[J]. 材料工程, 2007, 0(12): 3-7.
[12] 计芳, 冯可芹, 杨屹, 连姗姗, 吴金岭. 工艺参数对电场诱导Fe-Ti-C系燃烧合成的影响[J]. 材料工程, 2007, 0(12): 52-57.
[13] 于育强, 张佐光, 唐邦铭, 梁子青. 织物预成型体毛细作用研究[J]. 材料工程, 2006, 0(6): 20-23,32.
[14] 宋光雄, 张晓庆, 常彦衍, 张峥, 钟群鹏. 压力设备腐蚀失效案例统计分析[J]. 材料工程, 2004, 0(2): 6-9.
[15] 韦丽君, 马风雷, 李任江. 液态模锻在铸铝合金中的应用研究[J]. 材料工程, 2003, 0(7): 40-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn