Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (10): 1-6    DOI: 10.11868/j.issn.1001-4381.2015.10.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
纳米氧化铜的制备及其室温脱除H2S的性能研究
李芬1,*(), 雷涛1, 杨莹1, 张彦平2, 魏进1, 杨光辉1
1 哈尔滨理工大学 化学与环境工程学院, 哈尔滨 150040
2 河北工业大学 土木工程学院, 天津 300401
Preparation of Nano-CuO and Its Removal Performance of H2S at Room Temperature
Fen LI1,*(), Tao LEI1, Ying YANG1, Yan-ping ZHANG2, Jin WEI1, Guang-hui YANG1
1 College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China
2 School of Civil Engineering, Hebei University of Technology, Tianjin 300401, China
全文: PDF(1665 KB)   HTML ( 45 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用液相沉淀和固相反应法制备纳米氧化铜,借助XRD,XPS,TEM和BET等手段分析纳米氧化铜的结构,并考察结构对H2S脱除性能的影响。结果表明:改变制备工艺参数可获得不同晶粒尺寸的纳米氧化铜,随着晶粒尺寸的增大,材料的脱硫活性明显下降,其中晶粒尺寸为9.3nm的CuO的脱硫性能最好,H2S穿透时间可达270min;纳米氧化铜由于晶粒尺寸小导致的少量团聚对脱硫活性未产生明显影响,但其表面氧空位的出现和铜元素周围电子密度的下降有利于提高脱硫性能;纳米氧化铜的比表面积相差较小时,对脱硫活性的影响不显著,但如果颗粒堆积形成的不规则孔分布较窄,且同时存在着开放和收缩两种孔结构时,有利于H2S的脱除。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李芬
雷涛
杨莹
张彦平
魏进
杨光辉
关键词 纳米材料氧化铜结构室温脱硫硫化氢    
Abstract

Nano-CuO was prepared by methods of liquid-phase precipitation and solid state reaction. The structure of nano-CuO was analyzed by XRD, XPS, TEM and BET techniques, and the effect of the structure of nano-CuO on the removing performance of H2S was also studied. The results indicate that various crystal size nano-CuO can be prepared by changing preparation process parameters. The desulfurization performance of nano-CuO decreases significantly with the increases of crystal size. The nano-CuO with the crystal size of 9.3 nm exhibits the best desulfurization performance, and the breakthrough time of H2S can reach 270 min. A small amount cluster caused by small crystal size has a little impact on the desulfurization activity of nano-CuO. However, the appearance of oxygen vacancies on the copper oxide surface and the decrease of electron cloud density around the copper are beneficial to the improving of desulfurization performance of nano-CuO. When the specific surface area is a little different,the effect on the desulfurization activity of nano-CuO is not obvious. But the removal of H2S can be improved when the irregular pore formed by grain accumulation distribution is narrow, and the open and contraction pore structures exist at the same time.

Key wordsnanomaterial    copper oxide    structure    desulfurization at room temperature    hydrogen sulfide
收稿日期: 2014-02-10      出版日期: 2015-10-17
基金资助:国家自然科学基金项目(51108144);黑龙江省自然科学基金项目资助(E201146);绿色化工技术黑龙江省高等学校科技创新团队(2014TD007)
通讯作者: 李芬     E-mail: 82851859@126.com
作者简介: 李芬(1975-),女,教授,现从事脱臭技术研究,联系地址:哈尔滨市香坊区林园路4号哈尔滨理工大学南区化学与环境工程学院(150040),E-mail: 82851859@126.com
引用本文:   
李芬, 雷涛, 杨莹, 张彦平, 魏进, 杨光辉. 纳米氧化铜的制备及其室温脱除H2S的性能研究[J]. 材料工程, 2015, 43(10): 1-6.
Fen LI, Tao LEI, Ying YANG, Yan-ping ZHANG, Jin WEI, Guang-hui YANG. Preparation of Nano-CuO and Its Removal Performance of H2S at Room Temperature. Journal of Materials Engineering, 2015, 43(10): 1-6.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.001      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/1
Sample Agitating time/min Concentration/(mol·L-1) Cu2+∶OH- Temperature/℃
L1 10 0.1 1∶1.5 25
L2 20 0.8 1∶2.5 40
L3 30 0.3 1∶2.8 60
L4 20 0.8 1∶2.8 25
Table 1  液相沉淀法的制备工艺参数
Fig.1  纳米铜氧化物的XRD衍射图
Fig.2  纳米氧化铜的穿透时间曲线
Fig.3  纳米氧化铜的TEM照片
(a)L4;(b)S5;(c)A6
Sample L4 S5 A6
Cu∶O(total oxygen) 0.50 0.76 0.36
Lattice oxygen∶ hydroxyl oxygen∶ adsorbed oxygen 63.8∶26.0∶10.2 63.1∶27.8∶9.1 61.8∶24.2∶14.0
Cu∶O(lattice oxygen) 0.77 1.22 0.59
Table 2  纳米氧化铜表面Cu,O的XPS拟合数据
Fig.4  Cu2p的XPS谱图
Fig.5  纳米氧化铜的吸附-脱附等温线
(a)L4;(b)S5;(c)A6
Sample Specific surface area/(m2·g-1) Pore volume/(cm3·g-1)
L4 58.9989 0.197859
S5 52.8222 0.188310
A6 3.1712 0.002509
Table 3  纳米氧化铜比表面积和孔结构数据
Sample >60nm 60-20nm 20-15nm 15-10nm 10-5nm 5-2nm
L4 1.46 13.60 55.80 28.00 1.11
S5 30.30 24.70 25.90 12.90 6.18
A6 40.40 15.90 1.20 2.60 1.80 38.10
Table 4  纳米氧化铜孔径分布数据(%)
1 周婷, 辛金豪, 彭亮, 等 活性碳纤维生物挂膜脱除硫化氢[J]. 环境工程学报, 2012, 6 (9): 3243- 3247.
1 ZHOU Ting, XIN Jin-hao, PENG Liang, et al Removal of hydrogen sulfide gas by biological activated carbon fiber and bio-membrance[J]. Chinese Journal of Environmental Engineering, 2012, 6 (9): 3243- 3247.
2 侯相林, 高荫本, 陈诵英 各种金属氧化物高温脱硫性能比较[J]. 环境工程, 1997, 15 (3): 30- 32.
2 HOU Xiang-lin, GAO Yin-ben, CHEN Song-ying High temperature H2S removal over various metal oxides[J]. Environmental Engineering, 1997, 15 (3): 30- 32.
3 LI Z J, FLYTZANI-STEPHANOPOULOS M Cu-Cr-O and Cu-Ce-O regenerable oxide sorbents for hot gas desulfurization[J]. Industrial & Engineering Chemistry Research, 1997, 36 (1): 187- 196.
4 PINEDA M, PALACIOS J M, ALONSO L Performance of zinc oxide based sorbents for hot coal gas desulfurization in multicycle tests in fixed-bed reactor[J]. Fuel, 2000, 79 (8): 885- 895.
5 ALONSO L, PALACIOS J M, GARCIA E, et al Characterization of Mn and Cu oxides as regenerable sorbents for hot coal gas desulfurization[J]. Fuel Processing Technology, 2000, 62 (1): 31- 44.
6 LEE H S, KIM J Y, YU J K, et al A study of desulfurization ability and activation energy for CuO-AgO sorbents[J]. Korean Journal of Chemical Engineering, 2005, 22 (6): 889- 893.
7 BU X P, YING Y J, ZHANG C Q, et al Research improvement in Zn-based sorbent for hot gas desulfurization[J]. Powder Technology, 2008, 180 (1-2): 253- 258.
8 KO T H, CHU H, CHAUNG L K The sorption of hydrogen sulfide from hot syngas by metal oxides over supports[J]. Chemosphere, 2005, 58 (4): 467- 474.
9 KARVAN O, ATAKUL H Investigation of CuO/mesoporous SBA-15 sorbents for hot gas desulfurization[J]. Fuel Processing Technology, 2008, 89 (9): 908- 915.
10 KARVAN O, SIRKECIOGLU A, ATAKUL H Investigation of nano-CuO/mesoporous SiO2 materials as hot gas desulphurization sorbents[J]. Fuel Processing Technology, 2009, 90 (12): 1452- 1458.
11 DHAGE P, SAMOKHVALOV A, REPALA D, et al Copper-promoted ZnO/SiO2 regenerable sorbents for the room temperature removal of H2S from reformate gas streams[J]. Industrial & Engineering Chemistry Research, 2010, 49 (18): 8388- 8396.
12 YANG H Y, TATARCHUK B Novel-doped zinc oxide sorbents for low temperature regenerable desulfurization applications[J]. AICHE Journal, 2010, 56 (11): 2898- 2904.
13 CUI H, TUM S Q, REESE M A Removal of sulfur compounds from utility pipelined synthetic natural gas using modified activated carbons[J]. Catalysis Today, 2009, 139 (4): 274- 279.
14 KIM H T, JUN K W, KIM S M, et al Co-precipitated Cu/ZnO/Al2O3 sorbent for removal of odorants t-butylmercaptan (TBM) and tetrahydrothiophene (THT) from natural gas[J]. Energy and Fuels, 2006, 20 (5): 2170- 2173.
15 BAE J W, KANG S H, MURALI D G, et al Effect of Al2O3 content on the adsorptive properties of Cu/ZnO/ Al2O3 for removal of odorant sulfur compounds[J]. International Journal of Hydrogen Energy, 2009, 34 (20): 8733- 8740.
16 李芬, 张彦平, 杨莹, 等 活性炭负载纳米ZnO的结构及常温脱除H2S的性能[J]. 硅酸盐学报, 2012, 40 (6): 800- 805.
16 LI Fen, ZHANG Yan-ping, YANG Ying, et al Structure of activated carbon supported with nano-ZnO and its removal performance of H2S at room temperature[J]. Journal of the Chinese Ceramic Society, 2012, 40 (6): 800- 805.
17 闫波, 王新, 邵纯红, 等 纳米氧化铜的制备及常温脱硫效能研究[J]. 无机化学学报, 2007, 23 (11): 1869- 1874.
17 YAN Bo, WANG Xin, SHAO Chun-hong, et al CuO nanoparticles preparation and desulfurization performance at normal temperature[J]. Chinese Journal of Inorganic Chemistry, 2007, 23 (11): 1869- 1874.
18 石镇泰 燃烧-酸碱滴定法测定银精矿中的硫量[J]. 甘肃冶金, 2008, 30 (2): 73- 84.
18 SHI Zhen-tai Determination of sulfur content in silver concentrates by combustion-acid-base titrimetry[J]. [J]. Gansu Metallurgy, 2008, 30 (2): 73- 84.
19 YI H H, YU Q F, TANG X L, et al Phosphine adsorption removal from yellow phosphorus tail gas over CuO-ZnO-La2O3/activated carbon[J]. Industrial & Engineering Chemistry Research, 2011, 50 (7): 3960- 3965.
20 张悦, 张磊, 邓积光, 等 水热法制备特定形貌单晶La2-xSrxCuO4及甲烷催化氧化性能[J]. 催化学报, 2009, 30 (4): 347- 350.
20 ZHANG Yue, ZHANG Lei, DENG Ji-guang, et al Hydrothermal fabrication and catalytic performance of single-crystalline La2-xSrxCuO4(x=0, 1) with specific morphologies for methane oxidation[J]. Chinese Journal of Catalysis, 2009, 30 (4): 347- 350.
21 KIM J, KIM W, YONG K J. CuO/ZnO heterostructured nanorods: photochemical dynthesis and the mechanism of HS gas sensing[J] Journal of Physical Chemistry C, 2012, 116(29): 15682-15691.
22 WU Q, YAKSHINSKIY B V, MADEY T E Adsorption and decomposition of H2S on UO2 (001)[J]. Surface Science, 2003, 523, 1- 11.
23 甘小荣, 薛方红, 黄昊, 等 SiC/C纳米复合材料的制备与性能表征[J]. 材料工程, 2014, (2): 75- 80.
23 GAN Xiao-rong, XUE Fang-hong, HUANG Hao, et al Preparation and characterization of SiC/C nano-composites[J]. Journal of Materials Engineering, 2014, (2): 75- 80.
24 陈斌, 庞厚君, 张修庆, 等 Fe3Al金属间化合物多孔材料的孔隙特征[J]. 机械工程材料, 2008, 32 (5): 33- 37.
24 CHEN Bin, PANG Hou-jun, ZHANG Xiu-qing, et al Porosity of Fe3Al intermetallic porous materials[J]. Materials for Mechanical Engineering, 2008, 32 (5): 33- 37.
[1] 熊京鹏, 刘勇. 镁基复合材料界面调控研究进展[J]. 材料工程, 2023, 51(1): 1-15.
[2] 吴立清, 冯柳, 毛晓璇, 穆洪亮, 刘志超, 牛金叶, 高蔷. 量子点/碳复合材料在碱金属离子电池的应用进展[J]. 材料工程, 2023, 51(1): 36-51.
[3] 华江龙, 江琦. 耐久可拉伸超疏水材料的构建及应用研究进展[J]. 材料工程, 2023, 51(1): 76-84.
[4] 陈小龙, 李文生, 娄明, 徐凯, 陈雷雷, 常可可. Fe-Ni基合金设计中前过渡族元素对结构与性能的影响[J]. 材料工程, 2022, 50(9): 32-42.
[5] 孟倩, 李东阳, 杨江仁, 刘天增. 310S耐热钢的高温氧化行为[J]. 材料工程, 2022, 50(9): 137-149.
[6] 徐思瑜, 李德, 李佳璐, 申锋, 郑鹏. 锰氧化物的结构分析及其在能源与环境中的典型应用[J]. 材料工程, 2022, 50(8): 82-98.
[7] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[8] 焦晨, 梁绘昕, 叶昀, 张寒旭, 何志静, 杨友文, 沈理达, 侯锋. 光固化生物陶瓷功能化研究进展[J]. 材料工程, 2022, 50(7): 30-39.
[9] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[10] 王露, 陈雷雷, 徐凯, 娄明, 杜玉洁, 毛勇, 常可可. 前过渡族元素X对TiAlXN涂层结构与性能的作用[J]. 材料工程, 2022, 50(7): 69-79.
[11] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[12] 程慧聪, 王雅雷, 李阿欣, 刘怀菲, 武囡囡, 刘蓉. 并流共沉淀法合成Dy2O3-ZrO2纳米粉体[J]. 材料工程, 2022, 50(6): 97-106.
[13] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[14] 唐帅, 刘佳敏, 李林鲜, 温希平, 彭庆, 刘振宇, 王国栋. 钒微合金钢中α-Fe/V4C3界面结构与稳定性的第一性原理计算[J]. 材料工程, 2022, 50(5): 172-177.
[15] 董常熠, 于德梅. 固态电解质中的聚合物复合体系研究进展[J]. 材料工程, 2022, 50(4): 15-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn