Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (10): 7-13    DOI: 10.11868/j.issn.1001-4381.2015.10.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
蒙脱土/碳纳米管组成对聚乙烯复合材料性能的影响
代士维1, 张乐天1,2,*(), 李俊1, 乔新峰2, 马跃1
1 上海应用技术学院, 上海 201418
2 上海化工研究院 有机化工研究所上海市聚烯烃催化技术重点实验室, 上海 200062
Effect of Composition of MMT/MWCNTs on Mechanical Properties of Polyethylene Nanocomposite
Shi-wei DAI1, Le-tian ZHANG1,2,*(), Jun LI1, Xin-feng QIAO2, Yue MA1
1 Shanghai Institute of Technology, Shanghai 201418, China
2 Shanghai Key Laboratory of Polyolefin Catalysis Technology, Organic Chemistry Division, Shanghai Research Institute of Chemical Industry, Shanghai 200062, China
全文: PDF(1290 KB)   HTML ( 37 )  
输出: BibTeX | EndNote (RIS)      
摘要 

将改性的纳米蒙脱土(MMT)和官能化的多壁碳纳米管(MWCNTs)进行复合,然后负载TiCl4催化组分,制备出纳米载体Ziegler-Natta催化剂,最后进行乙烯原位聚合得到含有多维纳米材料的聚乙烯基复合材料。通过调控纳米载体中两种材料的组成,研究蒙脱土/碳纳米管组成对纳米复合材料性能的影响。结果表明:纳米蒙脱土、改性碳纳米管复合作为催化剂的载体,能够得到高活性的乙烯聚合催化剂。两种纳米材料组成的改变,会影响聚乙烯复合材料的力学性能。当多壁碳纳米管与蒙脱土比例为1:1时,所得到的复合材料的拉伸强度为38.7MPa。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代士维
张乐天
李俊
乔新峰
马跃
关键词 蒙脱土多壁碳纳米管原位聚合拉伸性能聚乙烯复合材料    
Abstract

Several heterogeneous Ziegler-Natta catalysts were prepared by loading TiCl4 using mixture of modified montmorillonite (MMT) and functionalized muti-walled carbon nanotubes (MWCNTs) as effective composite nanofillers. The polyethylene nanocomposites were produced by in-situ polymerization with these catalysts. The effect of composition of MMT and MWCNTs on the mechanical properties of polyethylene nanocomposite was investigated. The results show that highly active polymerization catalyst with the nanofillers containing MMT and modified MWCNTs can be obtained. The composition of nanofiller has a remarkable influence on mechanical properties of polyethylene nanocomposite. The maximum tensile strength of polyethylene nanocomposite is 38.7MPa using the mass ratio of MMT to MWCNTs of 1:1.

Key wordsmontmorillonite    multi-walled carbon nanotube    in-situ polymerization    tensile property    polyethylene    composite
收稿日期: 2014-10-29      出版日期: 2015-10-17
基金资助:上海市创新计划纳米专项资助(11nm0502000)
通讯作者: 张乐天     E-mail: zhanglt78@163.com
作者简介: 张乐天(1978-),男,高级工程师,博士,主要从事烯烃聚合催化剂、纳米增强聚烯烃材料等方面的研究工作,联系地址:上海市杨浦飞彰武路100号东大楼(200092),E-mail: zhanglt78@163.com
引用本文:   
代士维, 张乐天, 李俊, 乔新峰, 马跃. 蒙脱土/碳纳米管组成对聚乙烯复合材料性能的影响[J]. 材料工程, 2015, 43(10): 7-13.
Shi-wei DAI, Le-tian ZHANG, Jun LI, Xin-feng QIAO, Yue MA. Effect of Composition of MMT/MWCNTs on Mechanical Properties of Polyethylene Nanocomposite. Journal of Materials Engineering, 2015, 43(10): 7-13.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.002      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/7
Sample Mass fraction of nano fillers/% EtOH/MgCl2(mole ratio) Mass fraction of Ti/%
MgCl2 MMT CNTS(-OH)
Cat1 33.3 66.7 0 3 2.72
Cat2 33.4 58.3 8.3 3 2.00
Cat3 33.3 50.0 16.7 3 2.09
Cat4 33.3 33.3 33.4 3 2.03
Cat5 33.3 16.7 50.0 3 2.56
Cat6 33.3 0 66.7 3 2.12
Cat7 100 0 0 3 2.72
Table 1  纳米载体催化剂的组成及其相应的钛含量
Sample PE Nano fillers mass ratio(MMT∶CNTs) Productivity/kg·(g Ti·h)-1 Bulk Density/(g·cm-3) BET surface area/(m2·g-1)
Cat1 PE1 4∶0 283.3 0.23 318
Cat2 PE2 7∶1 345.2 0.26 -
Cat3 PE3 3∶1 611.1 0.32 286
Cat4 PE4 2∶2 785.1 0.35 226
Cat5 PE5 1∶3 596.8 0.31 -
Cat6 PE6 0∶4 337.0 0.34 130
Cat7 PE7 0∶0 820.0 0.32 100
Table 2  纳米载体催化剂的组成及其聚合结果
Fig.1  乙烯聚合反应的动力学曲线
Fig.2  MMT,MWCNT,聚乙烯纳米复合材料和纳米复合载体催化剂的WAXD谱图
(a)MMT,MWCNT,聚乙烯纳米复合材料;(b)纳米复合载体催化剂
Fig.3  MMT/MWCNTs/MgCl2 载体的SEM
(a)和TEM 照片
Fig.4  MMT/MWCNTs载体(50∶1)和PE/MMT/MWCNTs的TEM图
(a)MMT/MWCNTs载体(50∶1);(b)PE/MMT/MWCNTs
Sample Nano fillers ratio(MMT∶CNTs) Mass fraction of MMT/% Mass fraction of MWCNT/% Mv/(10-6g·mol-1) Tensile strength/MPa Elongation at break/%
PE1 4∶0 0.0010 0 1.48 31.1 472
PE2 3.5∶0.5 0.0088 0.0012 1.46 32.5 523
PE3 3∶1 0.0075 0.0025 1.35 33.8 534
PE4 2∶2 0.0050 0.0050 1.43 38.7 538
PE5 1∶3 0.0025 0.0075 1.29 33.1 522
PE6 0∶4 0 0.0010 1.03 31.6 489
PE7 0∶0 0 0 1.00 26.6 529
Table 3  聚乙烯和聚乙烯/MMT/MWCNT复合材料的力学性能
1 ROY R Ceramics by the solution-sol-gel route[J]. Science, 1987, 238 (4834): 1664- 1669.
2 KUO S W, HUANG W J, HUANG S B, et al Syntheses and characterizations of in situ blended metallocence polyethylene/clay nanocomposites[J]. Polymer, 2003, 44 (25): 7709- 7719.
3 SHIN S Y A, SIMON L C, SOARES J B P, et al Polyethylene-clay hybrid nanocomposites: in situ polymerization using bifunctional organic modifiers[J]. Polymer, 2003, 44 (25): 5317- 5321.
4 KAWASUMI M The discovery of polymer-clay hybrids[J]. Journal of Polymer Science, PartA: Polymer Chemistry, 2004, 42 (5): 819- 824.
5 SPITALSKY Z, TASIS D, PAPAGELIS K, et al Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties[J]. Progress in Polymer Science, 2010, 35 (3): 357- 401.
6 RAHMAN A, ALI I, ZAHRANI S M A, et al A review of the applications of nanocarbon polymer composites[J]. [J]. Nano, 2011, 6 (3): 185- 203.
7 ZHANG W D, PHANG I Y, LIU T X Growth of carbon nanotubes on clay: unique nanostructured filler for high-performance polymer nanocomposites[J]. Advanced Materials, 2006, 18 (1): 73- 77.
8 孙莉莉, 钟艳莉 碳纳米纤维/高密度聚乙烯复合材料结晶行为和介电性能的研究[J]. 材料工程, 2013, (4): 17- 22.
8 SUN Li-li, ZHONG Yan-li Crystallization and dielectric properties of carbon nanofiber/high-density polyethylene composites[J]. Journal of Materials Engineering, 2013, (4): 17- 22.
9 杜彦, 季铁正, 张教强, 等. 石墨烯/高密度聚乙烯导电复合材料的制备与表征. 航空材料学报, 2013, 33 (1): 68-71. DU Yan, JI Tie-zheng, ZHANG Jiao-qiang, et al Preparation and characterization of graphene nanosheets/high density polyethylene conductive composites[J]. Journal of Aeronautical Materials, 2013, 33 (1): 68- 71.
10 梁兴泉, 袁道升, 李克文, 等 有机改性蒙脱土对聚乙烯稳定性影响[J]. 材料工程, 2008, (12): 70- 72.
10 LIANG Xing-quan, YUAN Dao-sheng, LI Ke-wen, et al Effect of organic montmorillonite on stability of PE composite[J]. Journal of Materials Engineering, 2008, (12): 70- 72.
11 张广成, 何庆龙, 刘铁民, 等 硅烷交联聚乙烯/纳米蒙脱土复合材料的研究[J]. 材料工程, 2003, (11): 3- 6.
11 ZHANG Guang-cheng, HE Qing-long, LIU Tie-min, et al Study on polyethylene cross-linked with silane/nano-montmorillonite composite[J]. Journal of Materials Engineering, 2003, (11): 3- 6.
12 HE F A, ZHANG L M Using inorganic POSS-modified laponite clay to support a nickel alpha-diimine catalyst for in situ formation of high performance polyethylene nanocomposites[J]. Nanotechnology, 2006, 17 (24): 5941- 5946.
13 TRUJILLO M, ARNAL M L, MULLER A J, et al Thermal and morphological characterization of nanocomposites prepared by in-situ polymerization of high-density polyethylene on carbon nanotubes[J]. Macromolecules, 2007, 40 (17): 6268- 6276.
14 REN C Y, DU X H, MA L, et al Preparation of multifunctional supported metallocene catalyst using organic multifunctional modifier for synthesizing polyethylene/clay nanocomposites via in situ intercalative polymerization[J]. Polymer, 2010, 51 (15): 3416- 3424.
15 LEONE G, BERTINI F, CANETTI M, et al. In situ polymerization of ethylene using metallocene catalysts: Effect of clay pretreatment on the properties of highly filled polyethylene nanocomposites[J] Journal of Polymer Science, Part A: Polymer Chemistry, 2008, 46(16): 5390-5403.
16 MANESHI A, SOARES J B P, SIMON L C Polyethylene/clay nanocomposites made with metallocenes supported on different organoclays[J]. Macromolecular Chemistry and Physics, 2011, 212 (3): 216- 228.
17 WEI L M, TANG T, HUANG B T Synthesis and characterization of polyethylene/clay-silica nanocomposites: a montmorillonite/silica-hybrid-supported catalyst and in situ polymerization[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2004, 42 (4): 941- 949.
18 LIU C B, TANG T, ZHAO Z F, et al. Preparation of functionalized montmorillonites and their application in supported zirconocene catalysts for ethylene polymerization[J] Journal of Polymer Science, Part A: Polymer Chemistry, 2002, 40(11): 1892-1898.
19 YANG K, HUANG Y, DONG J Y Efficient preparation of isotactic polypropylene/montmorillonite nanocomposites by in situ polymerization technique via a combined use of functional surfactant and metallocene catalysis[J]. Polymer, 2007, 48 (21): 6254- 6261.
20 YAMAMOTO K, ISHIHAMA Y, SAKATA K Preparation of bimodal HDPEs with metallocene on Cr-montmorillonite support[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2010, 48 (17): 3722- 3728.
21 LI L J, KHLOBYSTOV A N, WILTSHIRE J G, et al Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes[J]. Nature Materials, 2005, 4 (6): 481- 485.
22 KIM J, KWAK S, HONG S M, et al Nonisothermal crystallization behaviors of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes[J]. Macromolecules, 2010, 43 (24): 10545- 10553.
23 PARK S, CHOI I S Production of ultrahigh-molecular-weight polyethylene/pristine MWCNT composites by half-titanocene catalysts[J]. Advanced Materials, 2009, 21 (8): 902- 905.
24 张乐天, 乔新峰, 叶晓峰, 等. 生产增强聚乙烯的纳米载体催化剂及其制备方法和应用[P]. 中国专利: ZL201310211103.8, 2013-12-18. ZHANG Le-tian, QIAO Xin-feng, YE Xiao-feng, et al. Preparation method of polyethylene nano-supported catalysts for reinforced polyethylene and its applications[P]. China Patent: ZL201310211103.8, 2013-12-18.
25 张乐天, 乔新峰, 代士维, 等 蒙脱土/碳纳米管多维增强的聚乙烯复合材料的制备[J]. 化工学报, 2013, 64 (10): 3865- 3870.
25 ZHANG Le-tian, QIAO Xin-feng, DAI Shi-wei, et al Preparation of polyethylene/MMT/MWCNTs nanocomposite by in-situ polymerization[J]. CIESC Journal, 2013, 64 (10): 3865- 3870.
26 FENG J D, WANG Q W Fabrication of nanocomposite powders of carbon nanotubes and montmorillonite[J]. Journal of the American Ceramic Society, 2008, 91 (3): 975- 978.
27 TANG C Y, XIANG L X, SU J X, et al Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay[J]. Journal of Physical Chemistry B, 2008, 112 (13): 3876- 3882.
28 RONG J F, JING Z H, LI H Q, et al A polyethylene nanocomposite prepared via in-situ polymerization[J]. Macromolecular Rapid Communications, 2001, 22 (5): 329- 334.
[1] 熊京鹏, 刘勇. 镁基复合材料界面调控研究进展[J]. 材料工程, 2023, 51(1): 1-15.
[2] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[3] 吴立清, 冯柳, 毛晓璇, 穆洪亮, 刘志超, 牛金叶, 高蔷. 量子点/碳复合材料在碱金属离子电池的应用进展[J]. 材料工程, 2023, 51(1): 36-51.
[4] 王宪, 贺雍律, 唐俊, 刘钧, 黄贤俊, 翟多才, 张鉴炜. Al颗粒夹层CFRP复合材料力学及电磁屏蔽性能[J]. 材料工程, 2023, 51(1): 140-147.
[5] 曾宏伟, 李红, 姚彧敏, 杨敏, 陶银萍, 任慕苏, 孙晋良. 热解碳含量对碳/碳-聚酰亚胺复合材料性能的影响[J]. 材料工程, 2023, 51(1): 148-154.
[6] 鞠录岩, 张建兵, 马玉钦, 张钊源, 魏文澜. ZrW2O8-Cf/E51低/负热膨胀复合材料制备及超声时间对其热膨胀和力学性能的影响[J]. 材料工程, 2023, 51(1): 171-178.
[7] 秦建雨, 赵翰鹏, 姚金雨, 张文超, 杨荣杰. 有机磷阻燃剂插层钙基蒙脱土纳米复合物的制备和表征[J]. 材料工程, 2022, 50(9): 78-88.
[8] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[9] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[10] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[11] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[12] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[13] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[14] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[15] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn