Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (10): 73-78    DOI: 10.11868/j.issn.1001-4381.2015.10.012
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
磁性MH/Fe3O4/SR复合材料的耐热机理及摩擦性能
王其磊()
中国人民武装警察部队学院 消防指挥系, 河北 廊坊 065000
Heat-resistant Mechanism and Friction Property of Magnetic MH/Fe3O4/SR Composites
Qi-lei WANG()
Fire Command Department, Chinese People's Armed Police Forces Academy, Langfang 065000, Hebei, China
全文: PDF(1858 KB)   HTML ( 51 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以SR、纳米Fe3O4和纳米MH为主要原料制备MH/Fe3O4/SR磁性橡胶复合材料。研究纳米Fe3O4和纳米MH不同配比时,复合材料的物理力学性能变化、耐热以及摩擦性能变化。结果表明:纳米粒子在SR基体中分布较为均匀, 不同配比的Fe3O4/MH能够有效改善硅橡胶的物理力学性能。当配比20phrMH/10phrFe3O4时,复合材料的拉伸强度、伸长率有所改善,性能较普通硅橡胶提高了5%左右。随着纳米MH与Fe3O4填料填充量不断加大,复合材料耐热性能不断提高,摩擦因数有效降低。当纳米添加量为30phrMH/10phrFe3O4时,复合材料的分解温度提高为450℃,当纳米添加量为20phrMH/20phrFe3O4时,复合材料的摩擦因数降为0.52。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王其磊
关键词 MH/Fe3O4/SR复合材料物理力学性能摩擦耐热    
Abstract

The MH/Fe3O4/SR magnetic rubber composites were prepared with SR, nano-Fe3O4 and nano-MH as raw materials. The friction, heat-resistant, physical and mechanical properties of the MH/Fe3O4/SR composites were studied using different proportions of nano-Fe3O4 and nano-MH. The results show that nano particles are well distributed in the silicone rubber matrix. The physical and mechanical properties of silicone rubber are effectively improved by different ratios of Fe3O4/MH. When the ratio is 20phrMH/10phrFe3O4, the tensile strength and elongation of the composites are somewhat improved, increase by 5%, compared with common silicone rubber.With the increase of the addition of nano MH and Fe3O4, the heat-resistant and friction properties of composites are continuously improved, the friction coefficient is effectively demoted. When the ratio is 30phrMH/10phrFe3O4, the decomposition temperature of the composites increases to 450℃. When the ratio is 20phrMH/20phrFe3O4, the friction coefficient of the composites is demoted to 0.52.

Key wordsMH/Fe3O4/SR composite    physical and mechanical property    friction    heat-resistant
收稿日期: 2014-04-30      出版日期: 2015-10-17
基金资助:河北省科技支撑项目(13211220);河北自然科学基金项目(E2015507037)
通讯作者: 王其磊     E-mail: wangqilei500@163.com
作者简介: 王其磊(1984-),男,博士,主要从事消防装备及特种材料的研究,联系地址:河北省廊坊市中国人民武装警察部队学院消防指挥系(065000),E-mail: wangqilei500@163.com
引用本文:   
王其磊. 磁性MH/Fe3O4/SR复合材料的耐热机理及摩擦性能[J]. 材料工程, 2015, 43(10): 73-78.
Qi-lei WANG. Heat-resistant Mechanism and Friction Property of Magnetic MH/Fe3O4/SR Composites. Journal of Materials Engineering, 2015, 43(10): 73-78.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.10.012      或      http://jme.biam.ac.cn/CN/Y2015/V43/I10/73
Fig.1  不同纳米粒子配比的MH/Fe3O4/SR复合材料断面微观结构SEM图
(a)10phr Fe3O4/10phrMH;(b)10phr Fe3O4/30phrMH;(c)30phr Fe3O4/10phrMH
Filler Mg/Fe3O4 Mass fraction of Mg/% Mass fraction of Fe/%
10phr/10phr 8.21 8.75
10phr/30phr 7.49 26.32
30phr/10phr 18.71 6.45
Table 1  复合材料的Fe/Mg含量分布
Fig.2  MH/Fe3O4/SR复合材料的拉伸强度
(a)与伸长率(b)变化曲线
Fig.3  MH/Fe3O4/SR复合材料的邵尔A硬度变化曲线
Fig.4  MH/Fe3O4/SR复合材料的热失重曲线
Sample phr ratio TTI/s AvEHC/(mJ·kg-1) PHRR/(kW·m-2) AvHRR/(kW·m-2) TSP/(m2·kg-1)
Pure SR 37.0 31.4 987.0 459.0 1207.0
MH/Fe3O410/10 39.0 29.4 754.0 390.0 989.0
MH/Fe3O4 10/30 40.0 28.6 689.0 360.0 690.0
MH/Fe3O430/10 42.0 25.4 497.0 290.0 642.0
Table 2  试样的耐热性能
Fig.5  MH/Fe3O4/SR复合材料的热释放速率
Fig.6  MH/Fe3O4/SR复合材料的摩擦因数变化曲线
1 傅政. 橡胶材料性能与设计应用[M]. 北京: 化学工业出版社, 2003.
1 FU Z. The Design and Application of Rubber Material[M]. Beijing: Chemical Industry Press, 2003.
2 PREMA K H, PHILIP KURIAN, JOY P, et al Physicomechanical and magnetic properties of neoprene based rubber ferrite composites[J]. Polymer-plastics Technology and Engineering, 2008, 47 (2): 137- 146.
3 刘继纯, 常海波, 李晴媛, 等 Mg(OH)2/聚苯乙烯复合材料的阻燃机制[J]. 复合材料学报, 2012, 29 (5): 32- 40.
3 LIU J C, CHANG H B, LI Q Y, et al Flame retardant mechanism of Mg(OH)2/polystyrene composites[J]. Acta Materiae Compositae Sinica, 2012, 29 (5): 32- 40.
4 TAGUETA A, CASSAGNAUB P, LOPEZ J M, et al Structuration, selective dispersion and compatibilizing effect of nano-fillers in polymer blends[J]. Progress in Polymer Science, 2014, 39 (8): 1526- 1563.
5 LAETITIA M, OLIVER C, MICHAL K, et al Implementation of metal-free ring-opening polymerization in the preparation of aliphatic polycarbonate materials[J]. Progress in Polymer Science, 2014, 39 (6): 1144- 1164.
6 张春梅, 杜华太, 庞明磊, 等 有机蒙脱土/氢化丁腈橡胶纳米复合材料的结构和性能[J]. 航空材料学报, 2013, 33 (5): 66- 71.
6 ZHANG C M, DU H T, PANG M L, et al Structure and performance of OMMT/hydrogenated nitrile rubber nano-composite material[J]. Journal of Aeronautical Materials, 2013, 33 (5): 66- 71.
7 PATTANA K, PONGDHOM S, NiITTAYA R Mechanical and electrical properties of natural rubber and nitrile rubber blends filled with multi-wall carbon nanotube: Effect of preparation methods[J]. Polymer Testing, 2013, 32 (4): 731- 738.
8 胡晓 Fe3O4/聚乙烯磁性复合材料的阻燃性能研究[J]. 消防科学与技术, 2012, 31 (2): 171- 173.
8 HU X Fire resistance performance of Fe3O4/polythene magnetic composite[J]. Fire Science and Technology, 2012, 31 (2): 171- 173.
9 HE S J, WANG Y Q, XI M M, et al Prevention of oxide aging acceleration by nano-dispersed clay in styrene- butadiene rubber matrix[J]. Polymer Degradation and Stability, 2013, 98 (9): 1773- 1779.
10 RAJASEKAR R, KAUSHIK P, GERT H, et al Development of nitrile butadiene rubber-nanoclay composites with epoxidized natural rubber as compatibilizer[J]. Materials & Design, 2009, 30 (9): 3839- 3845.
11 YU H Y, ZHANG Y, CHEN S G, et al Study on the properties of ethylene-vinyl acetate rubber vulcanizate filled with superfluous magnesium hydroxide/methacrylic acid[J]. Journal of Applied Polymer Science, 2011, 119 (3): 1813- 1819.
12 庞佑霞, 许焰, 张昊, 等 微/纳米复合涂层的抗冲蚀磨损性能[J]. 材料工程, 2013, (9): 60- 63.
12 PANG Y X, XU Y, ZHANG H, et al Erosion resistance of micro/nano composite coating[J]. Journal of Materials Engineering, 2013, (9): 60- 63.
13 沈尔明, 李晓欣, 王志宏, 等 长期储存后橡胶材料湿热老化分析[J]. 材料工程, 2013, (7): 87- 91.
13 SHEN E M, LI X X, WANG Z H, et al Hygrothermal aging analysis of rubber materials after long-term storage[J]. Journal of Materials Engineering, 2013, (7): 87- 91.
14 WANG X J, CHI Y L, LIU H B, et al Research on the impact and friction and wear properties of acrylonitrile-butadiene-rubber composites filled with SiC and graphite[J]. Journal of Thermoplastic Composite Materials, 2014, 27 (8): 1013- 1021.
[1] 陈刚, 武凯, 孙宇, 贾贺鹏, 朱志雄, 胡峰峰. 搅拌摩擦沉积增材技术研究进展[J]. 材料工程, 2023, 51(1): 52-63.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 孟倩, 李东阳, 杨江仁, 刘天增. 310S耐热钢的高温氧化行为[J]. 材料工程, 2022, 50(9): 137-149.
[4] 刘海定, 陈登华, 何曲波, 郭非, 王东哲, 麻彦龙. 高温熔融玻璃介质中耐热不锈钢腐蚀行为[J]. 材料工程, 2022, 50(9): 150-158.
[5] 金士杰, 田鑫, 林莉. 铝合金搅拌摩擦焊超声检测研究进展[J]. 材料工程, 2022, 50(8): 45-59.
[6] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[7] 陈爽, 韩雪艳, 安帅帅, 王勇杰, 李仕华. 基体表面粗糙度对MoS2/Ti薄膜摩擦磨损性能的影响[J]. 材料工程, 2022, 50(8): 169-177.
[8] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[9] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[12] 惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
[13] 雷磊, 伍雨驰, 程子晋, 刘莉, 郑靖. 牙科陶瓷材料的摩擦学性能研究进展[J]. 材料工程, 2022, 50(2): 1-11.
[14] 段峻, 纪秀林, 靳娟, 严春妍, 伏利. 冷热循环处理对钛基非晶合金摩擦学性能的影响[J]. 材料工程, 2022, 50(12): 120-127.
[15] 王海波, 赵君文, 陶星宇, 戴光泽. 高Cu铸造铝合金的摩擦磨损性能[J]. 材料工程, 2022, 50(11): 109-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn