Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (2): 115-121    DOI: 10.11868/j.issn.1001-4381.2016.02.018
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
Fe-Cu合金相分离过程
何统求, 王丽, 彭传校, 王胜海
山东大学(威海)机电与信息工程学院, 山东 威海 264209
Liquid Phase Separation of Fe-Cu Alloy
HE Tong-qiu, WANG Li, PENG Chuan-xiao, WANG Sheng-hai
School of Mechanical & Electrical and Information Engineering, Shandong University(Weihai), Weihai 264209, Shandong, China
全文: PDF(2984 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用喷铸和单辊旋淬快速冷却法制备Fe80Cu20,Fe60Cu40,Fe50Cu50 3种成分Fe-Cu合金,利用SEM,XRD,DSC对其凝固微观组织、相结构及相变热力学过程进行观察和分析。结果表明:3种成分的Fe-Cu合金均发生了不同程度的相分离,且Cu含量越高,DSC降温曲线上出现的液-液相分离温度越高,结晶组织中相分离现象越明显;Fe80Cu20合金随着过冷度的增加,富Fe相枝晶晶粒尺寸变小的同时富Cu相的体积分数也不断减少,而Fe相、Cu相的晶格常数均随过冷度的增加而增大,过冷度的增加提高了分离相的固溶度;在Fe60Cu40及Fe50Cu50合金中富Cu区出现二次相分离的富Fe小球,且富Fe小液滴不断聚集以降低界面能。揭示了Fe-Cu相分离型合金的快速凝固过程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何统求
王丽
彭传校
王胜海
关键词 Fe-Cu合金二次相分离快速凝固降低界面能    
Abstract:Three kinds of Fe-Cu alloys Fe80Cu20, Fe60Cu40, Fe50Cu20 were prepared respectively by spray casting and melt-spinning way. The microstructure, thermodynamics properties of Fe-Cu alloys during phase separation process were observed and analyzed through SEM, XRD and DSC measurement. The results show that three different Fe-Cu alloys have different levels of phase separation, the initial temperature of liquid-liquid(L-L) phase separation increases with increasing Cu content, meanwhile, phase separation phenomenon is more obvious. The grain size of Fe-rich phase and the volume fraction in Fe80Cu20 decreases with increasing degree of undercooling, while the crystal lattice constant of both Fe and Cu phases increases gradually. The increasing degree of undercooling improves the solid solubility of phase separation. The Fe-rich balls formed due to secondary L-L phase separation in Cu-rich phase are also observed in Fe50Cu50 and Fe60Cu40 alloys. The growth of the Fe-rich balls is the coagulation process of the two adjacent balls by the migration of smaller balls moving towards the bigger ones to reduce of interfacial energy. The rapid solidification process of Fe-Cu alloy with miscibility gap has been revealed.
Key wordsFe-Cu alloy    secondary L-L phase separation    rapid solidification    decrease of interfacial energy
收稿日期: 2014-12-23      出版日期: 2016-02-22
中图分类号:  TG113.1  
通讯作者: 王丽(1973-),女,教授,博士,主要从事非晶相分离和分子动力学研究,联系地址:山东省威海市环翠区文化西路180号(264209),E-mail:wanglihxf@sdu.edu.cn     E-mail: wanglihxf@sdu.edu.cn
引用本文:   
何统求, 王丽, 彭传校, 王胜海. Fe-Cu合金相分离过程[J]. 材料工程, 2016, 44(2): 115-121.
HE Tong-qiu, WANG Li, PENG Chuan-xiao, WANG Sheng-hai. Liquid Phase Separation of Fe-Cu Alloy. Journal of Materials Engineering, 2016, 44(2): 115-121.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.02.018      或      http://jme.biam.ac.cn/CN/Y2016/V44/I2/115
[1] NAKAGAWA Y. Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state[J]. Acta Metallurgica, 1958, 6(11):704-711.
[2] CHEN Q, JIN Z P. The Fe-Cu System:A thermodynamic evaluation[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 1995, 26:417-426.
[3] CHUANG Y Y, SCHMID R, CHANG Y A. Thermodynamic analysis of the iron-copper system(I):The stable and metastable phase equilibria[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 1984, 15:1921-1927.
[4] GHOSH S K, GROVER A K, CHOWDHURY P, et al. High magnetorsistance and low coercivity in electrodeposited Co/Cu granular multilayer[J]. Applied Physics Letters, 2006,89(13):2507-2509.
[5] PRABHAKAR A.Current induced bistability in giant magnetoresistive multilayer thin films[J]. Journal of Physics, 2006, 99(8):306-309.
[6] 唐鹏钧, 何晓磊, 王兴元, 等. 快速凝固/粉末冶金Al-20Si-7.5Ni-3Cu-1Mg-0.25Fe合金的显微组织与力学性能[J].航空材料学报,2013,33(3):12-17. TANG Peng-jun,HE Xiao-lei,WANG Xing-yuan,et al. Microstructure and mechanical properties of Al-20Si-7.5Ni-3Cu-1Mg-0.25Fe alloy prepared by rapidly solidified powder metallurgy[J]. Jouranal of Aeronautical Materials,2013,33(3):12-17.
[7] MIRANDA M G M, ESTÉVEZ-RAMS E, MARTÍNEZ G, et al. Phase separation in Cu90Co10 high-magnetoresistance materials[J]. Physical Review B:Condensed Matter and Materials Physics, 2003, 68(1):366-369.
[8] RUBINSTEIN M, HARRIS V G, DAS B N, et al. Magnetic properties of Cu80Cu20 and Cu80Co15Fe5 melt-spun ribbons[J]. Physical Review B:Condensed Matter and Materials Physics, 1994,50(12):550-558.
[9] ELDER S P, MUNITZ A, ABBASCHIAN G J.Metastable liquid immscibility in Fe-Co and Cu-Co alloys[J] Journal of Materials Science Forum, 1989, 50:137-150.
[10] MUNITZ A. Liquid separation effects in Fe-Cu alloys solidified under different cooling rates[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 1987,18:565-575.
[11] MUNITZ A. Metastable liquid phase separation in tungsten inert gas and electron beam copper/stainless-steel welds[J].Journal of Materials Science Letters, 1995, 30:2901-2910.
[12] 何杰,赵九州.快速凝固Cu-Fe难混溶合金的显微组织[J].金属学报,2005,41(7):407-419. HE Jie, ZHAO Jiu-zhou. Microstructures of rapidly solidified Cu-Fe immiscible alloys[J]. Acta Metallurgica Sinica, 2005,41(7):407-419.
[13] HE J, ZHAO J Z, RATKE L. Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu-Fe alloys[J]. Acta Materialia, 2006,54(6):1749-1756.
[14] 徐军.Cu-Fe液相分离机制及其快速凝固[D].北京:北京科技大学,2007.
[15] 刘素清, 虞明香, 王宥宏,等.快速凝固Cu-30%Fe合金的液相分解行为[J].稀有金属学报,2010,34(1):44-47 LIU Su-qing, YU Ming-xiang, WANG Yu-hong, et al. Liquid phase separation of Cu-30%Fe alloy in rapid solidification process[J]. Chinese Journal of Rare Metals,2010, 34(1):44-47.
[16] QI Y, WANG L, WANG S H, et al. Structural and dynamical heterogeneity of undercooled Fe75Cu25 melts with miscibility gap[J]. Journal of Alloys and Compounds,2014,615:962-968.
[17] FANG T, WANG L, PENG C X, et al. Liquid immiscibility in an Fe-Cu alloy by molecular dynamics simulation[J]. Journal of Physics:Condensed Matter, 2012,24(50):5103-5109.
[18] 齐玉,曲昌荣,王丽,等. Fe50Cu50合金熔体相分离过程的分子动力学模拟[J].物理学报, 2014,63(4):401-407. QI Yu, QU Chang-rong, WANG Li, et al. Liquid-liquid phase separation process of Fe50Cu50melt by molecular dynamics simulation[J]. Chinese Journal of Physics,2014,63(4):401-407.
[19] BAKER H. ASM Handbook-Alloy Phase Diagrams[M]. USA:ASM International Press, 1992.734-735.
[20] 王宥宏, 孙占波, 宋晓平. Cu-Cr合金快淬带的凝固数值模拟[J].中国有色金属学报, 2005, 15(7):1045-1050. WANG You-hong, SUN Zhan-bo, SONG Xiao-ping. Numerical simulation of single roller melt spinning for solidification process of Cu-Cr alloy[J]. The Chinese Journal of Nonferrous Metals, 2005,15(7):1045-1050.
[21] 陈则韶,葛新石,顾毓沁.热量技术和热物理性测定[M].合肥:中国科学技术大学出版社,1990.105-217. CHEN Zhe-Shao, GE Xin-shi, GU Yu-qin. Measure heat technology and heat properties of matter measure[M]. Hefei:University of Science and Technology of China Press,1990. 105-217.
[22] 中国金属学会.中国有色金属学会·金属材料物理性能手册(第一册)[M].北京:冶金工业出版社,1987.322-323. Chinese Metals Academy. Chinese Metals Nonferrous Academy·Metals Materials Physics Performance Handbook(Vol.1)[M].Beijing:Metallurgical Industry Press,1987.322-323.
[23] WANG X J, CHEN X D, XIA T D, et al. Influencing factors and estimation of the cooling rate with in an amorphous ribbon[J]. Intermetallics, 2004, 12:1233-1237.
[24] 张伟堂, 白敏丽. 单辊法制备非晶合金中冷却速率的数值计算[J]. 金属功能材料, 2002, 19(1):12-18. ZHANG Wei-tang,BAI Min-li. Numerical simulation of heat transfer during preparing amorphous alloy by single roller spinning[J].Metallic Functional Materials,2002,19(1):12-18.
[1] 黄高仁, 孙乙萌, 张利, 刘玉林. Mg含量对亚快速凝固Al-Zn-Mg-Cu-Zr合金组织与性能的影响[J]. 材料工程, 2018, 46(9): 109-114.
[2] 黄高仁, 孙乙萌, 张利, 刘玉林. 微量Ce对亚快速凝固Al-Zn-Mg-Cu合金组织与性能的影响[J]. 材料工程, 2018, 46(3): 105-111.
[3] 鲍颖, 骆琳, 俞泽民, 杨冬野, 刘娜, 张国庆, 孙剑飞. 氩气雾化Ti-48Al合金液滴的快速冷却和凝固组织[J]. 材料工程, 2018, 46(12): 117-123.
[4] 黄高仁, 孙乙萌, 张利, 刘玉林. Ce对Al-Zn-Mg-Cu合金亚快速凝固铸造组织的影响[J]. 材料工程, 2017, 45(11): 102-107.
[5] 王敬丰, 魏怡芸, 吴夏, 潘复生, 汤爱涛, 丁培道. 铸态、挤压态和快速凝固态ZK60镁合金微观组织及压缩性能[J]. 材料工程, 2011, 0(8): 32-35,41.
[6] 张振亚, 于化顺, 王少卿, 王海涛, 闵光辉. 快速凝固/粉末冶金法制备ZK60高强镁合金[J]. 材料工程, 2010, 0(5): 72-77.
[7] 刘广, 张振忠, 陈骞, 张浩, 尹长浩, 张少明. 快速凝固Mg-Zn-Y-Zr合金条带的组织和性能研究[J]. 材料工程, 2009, 0(9): 38-41,46.
[8] 谢壮德, 沈军, 孙剑飞, 周彼德. 快速凝固Al-Si合金干摩擦条件下的磨损特性[J]. 材料工程, 2002, 0(10): 7-10.
[9] 孙剑飞, 谢壮德, 沈军, 周彼德, 李庆春. 快速凝固/粉末冶金高硅铝合金微观组织及拉伸性能[J]. 材料工程, 2001, 0(11): 13-16.
[10] 晋芳伟, 刘佐权. 快速凝固Bi-Mn合金的结构及磁性研究[J]. 材料工程, 2000, 0(7): 24-26,29.
[11] 李沛勇, 戴圣龙, 柴世昌, 李裕仁. 新型高阻尼金属材料的研究进展[J]. 材料工程, 2000, 0(1): 38-41.
[12] 陈翌庆, 苏勇, 黄新民, 丁厚福, 郑玉春. 快速凝固Al-Fe基合金的组织演化和相选择[J]. 材料工程, 1999, 0(8): 6-8.
[13] 陈明安, 卓利, 张新明. Al-12.6%Si薄带双辊快速凝固成形试验研究[J]. 材料工程, 1999, 0(4): 32-35.
[14] 陈明安, 张新明. 双辊快速凝固制备颗粒增强铝基复合材料的新途径[J]. 材料工程, 1998, 0(2): 38-40.
[15] 米国发, 李庆春. 快速凝固Al-8wt%Cr合金显微组织及其耐热性研究[J]. 材料工程, 1997, 0(5): 3-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn