Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (3): 1-8    DOI: 10.11868/j.issn.1001-4381.2016.03.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Nb-Si超高温材料的放电等离子烧结(SPS)工艺研究
张爱军1,2, 韩杰胜1, 马文林1, 孟军虎1
1. 中国科学院兰州化学物理研究所固体润滑国家重点实验室, 兰州 730000;
2. 中国科学院大学, 北京 100049
Spark Plasma Sintering Process for Nb-Si Ultra-high Temperature Materials
ZHANG Ai-jun1,2, HAN Jie-sheng1, MA Wen-lin1, MENG Jun-hu1
1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(11255 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以Nb,Si粉末为原料,采用放电等离子烧结(SPS)技术制备了二元Nb-Si超高温材料,研究了烧结温度、保温时间、加热速率和冷却速率等工艺参数对材料物相组成、微观组织和室温力学性能的影响。结果表明:烧结温度在1300℃以上时,材料主要由Nbss(铌基固溶体)和α-Nb5Si3两相组成,材料的致密度和室温力学性能随着烧结温度的升高而不断提高,在1600℃制备的材料力学性能最好;在1600℃时,随着保温时间的延长,材料的物相组成和微观组织基本没有变化,而其力学性能有小幅度提高;较慢的加热速率和烧结完成后较快的冷却速率均有利于提高材料的室温力学性能。应用优化后的SPS工艺,制备出了室温综合力学性能优异的Nb-Si超高温材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张爱军
韩杰胜
马文林
孟军虎
关键词 Nb-Si超高温材料SPS工艺力学性能微观组织    
Abstract:Nb-Si ultra-high temperature material was prepared by sparking plasma sintering (SPS) technology using the mixed powders of niobium and silicon. The effect of process parameters, such as sintering temperature, holding time, heating and cooling rates in the sintering process, on the phase composition, microstructure and room temperature mechanical properties of the material was investigated. The results show that the material mainly consists of two phases of Nbss (Nb based solid solution) and α-Nb5Si3 as sintered above 1300℃. The relative density and mechanical properties of the material are enhanced continuously with increasing sintering temperature. The material prepared at 1600℃ has the optimum mechanical performance. The phase composition and the microstructure remain unchanged with increasing the holding time at 1600℃, while the mechanical properties of the material are improved slightly. The slow heating rate and the rapid cooling rate after sintering are favorable for improving the room temperature mechanical properties. With the application of an optimized SPS process, Nb-Si ultra-high temperature material with superior comprehensive room temperature mechanical properties can be prepared.
Key wordsNb-Si ultra-high temperature material    SPS process    mechanical property    microstructure
收稿日期: 2014-07-08      出版日期: 2016-03-22
中图分类号:  TG146.4+16  
通讯作者: 孟军虎(1975-),男,研究员,博士生导师,研究方向:粉末冶金,高温自润滑材料,微成形技术等,联系地址:甘肃省兰州市天水中路18号中国科学院兰州化学物理研究所固体润滑国家重点实验室(730000),E-mail:jhmeng@licp.cas.cn     E-mail: jhmeng@licp.cas.cn
引用本文:   
张爱军, 韩杰胜, 马文林, 孟军虎. Nb-Si超高温材料的放电等离子烧结(SPS)工艺研究[J]. 材料工程, 2016, 44(3): 1-8.
ZHANG Ai-jun, HAN Jie-sheng, MA Wen-lin, MENG Jun-hu. Spark Plasma Sintering Process for Nb-Si Ultra-high Temperature Materials. Journal of Materials Engineering, 2016, 44(3): 1-8.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.03.001      或      http://jme.biam.ac.cn/CN/Y2016/V44/I3/1
[1] 赵东阳, 刘伟, 沙江波. 放电等离子烧结制备Nb-Si-Ti-Al-Hf-Cr合金的显微组织及力学性能[J]. 材料工程, 2015, 43(10):20-27. ZHAO Dong-yang, LIU Wei, SHA Jiang-bo. Microstructure and properties of Nb-Si-Ti-Al-Hf-Cr alloys fabricated by spark plasma sintering[J]. Journal of Materials Engineering, 2015, 43(10):20-27.
[2] DRAWIN S, JUSTIN J F. Advanced lightweight silicide and nitride based materials for turbo-engine applications[J]. Aerospacelab Journal, 2011, (3):1-13.
[3] 曲士昱. Nb/Nb5Si3复合材料基础研究[D]. 北京:北京航空材料研究院,2002.
[4] BEWLAY B P, JACKSON M R, LIPSITT H A. The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-based in-situ composite[J]. Metallurgical and Materials Transactions A, 1996, 27:3801-3808.
[5] 马朝利,笠间昭夫,田中良平,等.Nb/Nb5Si3原位复合材料的开发研究[J]. 金属热处理学报,2000,21(2):83-88. MA Chao-li, KASAMA A,TANAKA R, et al. Development of Nb/Nb-silicide in-situ composites[J].Transaction of Metal Heat Treatment,2000,21(2):83-88.
[6] 姚成方, 郭喜平. Nb基超高温合金的制备技术及定向凝固组织[J]. 材料导报, 2007, 21(12):65-72. YAO Cheng-fang, GUO Xi-ping. Preparation techniques and directionally solidified microstructure of niobium-based ultrahigh temperature alloys[J]. Materials Review, 2007, 21(12):65-72.
[7] LIU W, FU Y M, SHA J B. Microstructure and mechanical properties of Nb-Si alloys fabricated by spark plasma sintering[J]. Progress in Natural Science:Materials International, 2013, 23(1):55-63.
[8] 陈哲,王世鑫,严有为.放电等离子烧结Nb/Nb5Si3原位复合材料[J].华中科技大学学报(自然科学版), 2005,33(12):22-30. CHEN Zhe, WANG Shi-xin, YAN You-wei. Spark plasma sintering of Nb/Nb5Si3 in-situ composites[J].Journal of Huazhong University of Science and Technology (Nature Science Edition), 2005, 33(12):22-30.
[9] 陈哲,严有为.烧结温度对SPS Nb/Nb5Si3原位复合材料组织结构的影响[J].材料热处理学报,2005,26(6):45-48. CHEN Zhe, YAN You-wei. Effect of sintering temperature on microstructure of Nb/Nb5Si3 in-situ composite prepared by spark plasma sintering[J].Transaction of Materials and Heat Treatment, 2005, 26(6):45-48.
[10] 林志斌,龙文元,尧军平,等.烧结温度对放电等离子烧结Nb/Nb5Si3复合材料显微结构的影响[J].热加工工艺,2011,40(10):119-121. LIN Zhi-bin, LONG Wen-yuan, YAO Jun-ping, et al. Effect of sintering temperature on microstructure of Nb/Nb5Si3 composite prepared by spark plasma sintering[J].Hot Working Technology,2011,40(10):119-121.
[11] 陈哲,严有为.原位Nb/Nb5Si3复合材料的放电等离子烧结及结构形成机理[J]. 稀有金属材料与工程,2006, 35(3):484-487. CHEN Zhe, YAN You-wei. Synthesis and formation mechanism of Nb/Nb5Si3 in-situ composites by spark plasma sintering[J].Rare Metal Materials and Engineering, 2006, 35(3):484-487.
[12] KIMURA Y, YAMAOKIA H, SEKIDO N, et al. Processing, microstructure, and mechanical properties of (Nb)/Nb5Si3 two-phase alloys[J]. Metallurgical and Materials Transactions A, 2005, 36:483-488.
[13] 严有为,陈哲,傅正义.Si含量对放电等离子烧结原位Nb/Nb5Si3复合材料显微结构的影响[J].复合材料学报,2005,22(2):6-10. YAN You-wei, CHEN Zhe, FU Zheng-yi. Influence of Si content on the microstructures of in-situ Nb/Nb5Si3 composites fabricated by spark plasma sintering[J]. Acta Materiae Compositae Sinica, 2005, 22(2):6-10.
[14] MA C L, KASAMA A, TAN Y, et al. Synthesis of Nb/Nb5Si3 in-situ composites by mechanical milling and reactive spark plasma sintering[J]. Materials Transactions, 2000, 41(6):719-726.
[15] DRAWIN S, MONCHOUX J P, et al. Microstructural properties of Nb-Si based alloys manufactured by powder metallurgy[J]. Advanced Materials Research, 2011, 278:533-538.
[16] XIONG B W, CAI C C, WANG Z J. Microstructures and mechanical properties of Nb/Nb5Si3 composites alloyed with W, Mo and W-Mo fabricated by spark plasma sintering[J]. Materials Science & Engineering:A, 2014, 606:68-73.
[17] KIM W Y, TANAKA H, KASAMA A, et al. Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites[J]. Intermetallics, 2001, 9:827-834.
[18] MADAN G, MENDIRATTA, JOHN J, et al. Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys[J]. Metallurgical Transactions A, 1991, 22:1573-1583.
[19] BEWLAY B P, JACKSON M R, ZHAO J C,et al. A review of very-high-temperature Nb-silicide-based composites[J]. Metallurgical and Materials Transactions A, 2003, 34:2043-2052.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[7] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[8] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[11] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[12] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[13] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[14] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[15] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn