Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (5): 59-64    DOI: 10.11868/j.issn.1001-4381.2016.05.010
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
不同接触尺度下PVA/HA复合水凝胶的滑动摩擦行为
崔晓彤, 刘金龙, 张德坤, 陈凯, 亓健伟
中国矿业大学 材料科学与工程学院, 江苏 徐州 221116
Sliding Friction Behavior of PVA/HA Composite Hydrogels Under Different Contacting Scales
CUI Xiao-tong, LIU Jin-long, ZHANG De-kun, CHEN Kai, QI Jian-wei
School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
全文: PDF(4978 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用UMT-II型多功能摩擦磨损试验机研究了不同接触尺度下PVA/HA复合水凝胶的滑动摩擦行为,并利用有限元模拟方法对PVA/HA复合水凝胶的滑动摩擦机理进行了探讨。结果表明:滑动过程中PVA/HA复合水凝胶的平均摩擦力、平均摩擦因数及变形深度随接触压头直径的增加逐渐减小,而随着接触载荷呈逐渐增加的趋势;随着接触压头直径的增加,液相的承载能力增大,从而平均摩擦力、变形深度减小;随着接触载荷的增加,液相流失增加,液相的承载力降低,从而平均摩擦力、变形深度增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔晓彤
刘金龙
张德坤
陈凯
亓健伟
关键词 PVA/HA复合水凝胶滑动摩擦有限元液相承载    
Abstract:UMT-II multi-functional friction and wear tester was used to investigate the sliding friction behavior of polyvinyl alcohol/hydroxyapatite(PVA/HA)composite hydrogel under different contacting scales, and the sliding friction mechanism of PVA/HA composite hydrogel was studied by finite element method (FEM). The results show that in the process of the sliding friction, the average friction, the average friction coefficient and the deformation depth of PVA/HA composite hydrogel decrease gradually with the contacting diameter increasing, and exhibit an increase trend with the contacting load; as the contact diameter increases, the fluid load support increases, then the average friction and deformation depth decrease; as the contact load increases, the loss of the liquid phase increases, then the fluid load support decreases, which causes that the average friction and deformation depth increase.
Key wordsPVA/HA composite hydrogel    sliding friction    FEM    fluid load support
收稿日期: 2015-08-14      出版日期: 2016-05-19
中图分类号:  R318.01  
通讯作者: 刘金龙(1962-),男,教授,博士,主要从事生物摩擦学的研究,联系地址:江苏省徐州市中国矿业大学南湖校区材料科学与工程学院(221116),E-mail:liujlong@cumt.edu.cn     E-mail: liujlong@cumt.edu.cn
引用本文:   
崔晓彤, 刘金龙, 张德坤, 陈凯, 亓健伟. 不同接触尺度下PVA/HA复合水凝胶的滑动摩擦行为[J]. 材料工程, 2016, 44(5): 59-64.
CUI Xiao-tong, LIU Jin-long, ZHANG De-kun, CHEN Kai, QI Jian-wei. Sliding Friction Behavior of PVA/HA Composite Hydrogels Under Different Contacting Scales. Journal of Materials Engineering, 2016, 44(5): 59-64.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.05.010      或      http://jme.biam.ac.cn/CN/Y2016/V44/I5/59
[1] TAKAO M, UCHIO Y, KAKIMARU H, et al. Arthroscopic drilling with debridement of remaining cartilage for osteochondral lesions of the talar dome in unstable ankles[J]. The American Journal of Sports Medicine, 2004, 32(2):332-336.
[2] CARRABBA M, SARZI-PUTTINI P. Introduction: osteoarthritis in the third millennium: a new era for an old disease?[J] Seminars in Arthritis and Rheumatism, 2004, 34(6): 1-2.
[3] KOBAYASHI A, BONFIELD W, KADOYA Y, et al. The size and shape of particulate polyethylene wear debris in total joint replacements[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1997, 211(1): 11-15.
[4] GOODMAN S B, SONG Y, YOO J Y, et al. Local infusion of FGF-2 enhances bone ingrowth in rabbit chambers in the presence of polyethylene particles[J]. Journal of Biomedical Materials Research Part A, 2003, 65(4): 454-461.
[5] LEONE G, BIDINI A, LAMPONI S, et al. States of water, surface and rheological characterisation of a new biohydrogel as articular cartilage substitute[J]. Polymers for Advanced Technologies, 2013, 24(9): 824-833.
[6] 范志恒, 周莉, 欧阳君君, 等. 化学-物理法制备聚乙烯醇/壳聚糖/纳米羟基磷灰石复合水凝胶及其性能[J]. 应用化学, 2014, 31(1): 61-64. FAN Zhi-heng, ZHOU Li, OUYANG Jun-jun, et al. Preparation and performance of polyvinyl alcohol/chitosan/nano-hydroxyapatite composite hydrogel via a chem-physical method[J]. Chinese Journal of Applied Chemistry, 2014, 31(1): 61-64.
[7] ZHE L, LIN Y. Effect of PEO on the network structure of PVA hydrogels prepared by freezing/thawing method[J]. Journal of Applied Polymer Science, 2013, 128(5): 3325-3329.
[8] GONZALEZ J S, ALVAREZ V A. Mechanical properties of polyvinylalcohol/hydroxyapatite cryogel as potential artificial cartilage[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34: 47-56.
[9] MAIOLO A S, AMADO M N, GONZALEZ J S, et al. Development and characterization of poly (vinyl alcohol) based hydrogels for potential use as an articular cartilage replacement[J]. Materials Science and Engineering: C, 2012, 32(6): 1490-1495.
[10] 张德坤, 葛世荣, 沈艳秋. 聚乙烯醇/羟基磷灰石复合水凝胶的摩擦磨损机理研究[J]. 中国科学: E 辑, 2009,39(4): 713-719. ZHANG De-kun, GE Shi-rong, SHEN Yan-qiu. Study on the friction and wear mechanism of PVA/HA composite hydrogel[J]. Science in China: E, 2009,39(4): 713-719.
[11] CHAN S M T, NEU C P, KOMVOPOULOS K, et al. Dependence of nanoscale friction and adhesion properties of articular cartilage on contact load[J]. Journal of Biomechanics, 2011, 44(7): 1340-1345.
[12] MORIMOTO K, KIMURA Y, HIROKAWA N, et al. Frictional properties of polyvinyl alcohol hydrogel mixed with water as an artificial articular cartilage[A]. The 15th International Conference on Biomedical Engineering[C]. Singapore:Springer International Publishing, 2014.714-717.
[13] 高立军, 高瑾, 李晓刚, 等. PVA 水凝胶在不同人体模拟液中的压缩蠕变行为[J]. 北京科技大学学报, 2014, 36(2):213-217. GAO Li-jun, GAO Jin, LI Xiao-gang, et al. Compressive creep behavior of PVA hydrogel in different simulated body fluids[J]. Journal of University of Science and Technology Beijing, 2014, 36(2):213-217.
[14] 刘志明, 吴鹏, 谢成, 等. 聚乙烯醇/纳米纤维素/聚乙烯醇的层层自组装及表征[J]. 材料工程, 2013, (1): 45-51. LIU Zhi-ming,WU Peng,XIE Cheng,et al. Characterization and layer-by-layer self-assembly of PVA/NCC/PVA[J]. Journal of Materials Engineering, 2013,(1): 45-51.
[15] 舒静, 冯晓荟, 郑丽娜, 等. 壳聚糖基三元智能水凝胶的制备及其敏感性[J]. 材料工程, 2013, (3): 67-70. SHU Jing,FENG Xiao-hui,ZHENG Li-na,et al. Preparation and sensitivity behaviors of chitosan-based intelligent hydrogels[J].Journal of Materials Engineering, 2013, (3): 67-70.
[16] SAKAI N, HAGIHARA Y, FURUSAWA T, et al. Analysis of biphasic lubrication of articular cartilage loaded by cylindrical indenter[J]. Tribology International, 2012, 46(1):225-236.
[17] GRAINDORGE S, FERRANDEZ W, JIN Z M, et al. Biphasic surface amorphous layer lubrication of articular cartilage[J]. Medical Engineering & Physics, 2005, 27(10):836-844.
[18] CHEN K, ZHANG D K, DAI Z M, et al. Research on the interstitial fluid load support characteristics and start-up friction mechanisms of PVA-HA-silk composite hydrogel[J]. Journal of Bionic Engineering, 2014, 11(3): 378-388.
[19] CHEN K, ZHANG D K, CUI X T, et al. Research on swing friction lubrication mechanisms and the fluid load support characteristics of PVA-HA composite hydrogel[J]. Tribology International, 2015, 90: 412-419.
[1] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[2] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[3] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[4] 张菁丽, 吴金平, 罗媛媛, 赵彬, 郭荻子, 赵圣泽, 杨帆. 基于Normalized Cockcroft&Latham韧性损伤准则Ti600合金临界损伤值的测定[J]. 材料工程, 2019, 47(7): 121-125.
[5] 孙卫青, 程伟. 基于响应面全局优化技术的蜂窝板材料性能参数修正[J]. 材料工程, 2019, 47(5): 159-166.
[6] 李雅芳, 刘皓, 赵义侠. 基于镀银纱线的电加热织物温度场模拟与电热性能[J]. 材料工程, 2019, 47(2): 68-75.
[7] 鹿旭飞, 林鑫, 马良, 曹阳, 黄卫东. 扫描路径对激光立体成形TC4构件热-力场的影响[J]. 材料工程, 2019, 47(12): 55-62.
[8] 张亮, 吴文恒, 卢林, 倪晓晴, 何贝贝, 杨启云, 祝国梁, 顾芸仰. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29-35.
[9] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[10] 宋清华, 肖军, 文立伟, 王显峰, 范珏雯, 石甲琪. 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程, 2018, 46(1): 83-91.
[11] 董抒华, 李伟东, 丁妍羽, 贾玉玺, 刘刚, 魏春城. 基于“离位”增韧技术Z向注射RTM成型的浸润研究[J]. 材料工程, 2017, 45(9): 52-58.
[12] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[13] 聂恒昌, 徐吉峰, 关志东, 黎增山, 王鑫. 复合材料胶接修理层合板拉伸性能及影响参数[J]. 材料工程, 2017, 45(10): 124-131.
[14] 任重, 黄兴元, 柳和生. 高聚物熔体锥形收敛流场分布的影响因素数值分析[J]. 材料工程, 2016, 44(3): 52-59.
[15] 刘万雷, 常新龙, 张晓军, 张磊. 基于细观有限元方法的复合材料横向力学性能分析[J]. 材料工程, 2016, 44(11): 107-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn