Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (9): 1-7    DOI: 10.11868/j.issn.1001-4381.2016.09.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
氧化石墨烯/铜基复合材料的微观结构及力学性能
洪起虎, 燕绍九, 杨程, 张晓艳, 戴圣龙
北京航空材料研究院 石墨烯及应用研究中心, 北京 100095
Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites
HONG Qi-hu, YAN Shao-jiu, YANG Cheng, ZHANG Xiao-yan, DAI Sheng-long
Research Center of Graphene Applications, Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(19912 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用球磨和真空热压烧结方法成功制备氧化石墨烯/铜复合材料。利用OM,SEM,XRD,显微硬度计和电子万能试验机等分析球磨后的复合粉形貌,研究氧化石墨烯添加量对复合微观结构及力学性能的影响。结果表明:制备的氧化石墨烯/铜基复合材料组织致密,氧化石墨烯以片状形态较均匀地分布在铜基体中,并与铜基体形成良好的结合界面。氧化石墨烯质量分数为0.5%时,复合材料的综合力学性能较好,显微硬度和室温压缩强度分别为63HV和276MPa,相对于纯铜基体分别提高了8.6%和28%。其强化机理为剪切应力转移强化、位错强化和细晶强化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
洪起虎
燕绍九
杨程
张晓艳
戴圣龙
关键词 氧化石墨烯/铜基复合材料真空热压烧结微观结构力学性能    
Abstract:Graphene oxide/copper (GO/Cu) composites were successfully synthesized through the ball milling and vacuum hot press sintering process. The morphologies of the mixture powders, and the microstructure and mechanical properties of GO/Cu composites were investigated by OM, SEM, XRD, hardness tester and electronic universal testing machine, respectively. The results show that the GO/Cu composites are compact. Graphene oxide with flake morphology is uniformly dispersed and well consolidated with copper matrix. When the mass fraction of graphene oxide is 0.5%, the microhardness and compress strength at RT reach up to 63HV and 276MPa, increased by 8.6% and 28%, respectively. The strengthening mechanism is load transfer effect, dislocation strengthening and fine crystal reinforcing.
Key wordsgraphene oxide/copper composite    vacuum hot press sintering    microstructure    mechanical property
收稿日期: 2016-06-15      出版日期: 2016-09-27
中图分类号:  TB383  
  TG146.1+1  
通讯作者: 燕绍九(1980-),男,博士,高级工程师,主要从事磁性材料及石墨烯应用研究工作,联系地址:北京市81信箱72分箱(100095),E-mail:shaojiuyan@126.com     E-mail: shaojiuyan@126.com
引用本文:   
洪起虎, 燕绍九, 杨程, 张晓艳, 戴圣龙. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44(9): 1-7.
HONG Qi-hu, YAN Shao-jiu, YANG Cheng, ZHANG Xiao-yan, DAI Sheng-long. Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites. Journal of Materials Engineering, 2016, 44(9): 1-7.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.09.001      或      http://jme.biam.ac.cn/CN/Y2016/V44/I9/1
[1] 岳红彦,高鑫,林轩宇,等.石墨烯增强铜基复合材料的研究现状[J].哈尔滨理工大学学报,2014,19(5):1-4.YUE H Y,GAO X,LIN X Y,et al.Progress of graphene reinforced copper matrix composite[J].Journal of Harbin University of Science and Technology,2014,19(5):1-4.
[2] BAKSHI S R,LAHIRI D,AGARWAL A.Carbon nanotube reinforced metal matrix composites:a review[J].International Materials Reviews,2010,55(1):41-64.
[3] CHEN X,XIA J,PENG J,et al.Carbon-nanotube metal-matrix composites prepared by electroless plating[J].Composites Science and Technology,2000,60(1):301-306.
[4] DAOUSHB W M,LIMA B K,MOA C B.Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process[J].Materials Science and Engineering:A,2009,60:247-253.
[5] KIM K T,CHA S I,HONG S H,et al.Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites[J].Materials Science and Engineering:A,2006,430(1-2):27-33.
[6] CHO S C,KIKUCHI K K,MIYAZAKI T,et al.Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites[J].Scripta Materialia,2010,63(4):375-378.
[7] CHO S C,KIKUCHI K K,KAWASAKI A.On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube-copper matrix composite[J].Acta Materialia,2012,60(2):726-736.
[8] RAJKUMAR K,ARAVINDAN S.Tribological studies on microwave sintered copper-carbon nanotube composites[J].Wear,2011,270(9-10):613-621.
[9] UDDIN S M,MAHMUD T,WOLF C,et al.Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites[J].Composites Science and Technology,2010,70(16):2253-2257.
[10] KIM K T,ECKERT J R,LIU G,et al.Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing[J].Scripta Materialia,2011,64(2):181-184.
[11] LIN B K,MO C B,NAM D H,et al.Mechanical and electrical properties of carbon nanotube/Cu nanocomposites by molecular-level mixing and controlled oxidation process[J].Journal of Nanoscience&Nanotechnology,2010,10(10):78-84.
[12] XUE Z W,WANG L D,ZHAO P T,et al.Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular-level dispersion[J].Materials and Design,2012,34:298-301.
[13] DAS S,LAHIRI D,LEE D Y,et al.Measurements of the adhesion energy of graphene to metallic substrates[J].Carbon,2013,59:121-129.
[14] SIE C T.Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J].Materials Science and Engineering Reports,2013,74(10):281-350.
[15] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[16] KIM K S,ZHAO Y,JANG H,et al.Large-scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature,2009,457(7230):706-710.
[17] PAVITHRA C L,SARADA B V,RAJULAPATI K V,et al.A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness[J].Scientific Reports,2014,4:4049-4055.
[18] LI M,CHE H,LIU X,et al.Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles[J].Materials Science,2014,49(10):3725-3731.
[19] VAROL T,CANAKCI A.Microstructure,electrical conductivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy[J].Metals and Materials International,2015,4:704-712.
[20] 凌自成,闫翠霞,史庆南,等.石墨烯增强金属基复合材料的制备方法研究进展[J].材料导报,2015,29(4):143-149.LIN Z C,YAN C X,SHI Q N,et al.Recent progress in preparation methods for metal matrix composite materials reinforced with graphene nanosheets[J].Materials Review,2015,29(4):143-149.
[21] JEONG H K,LEE Y P,LAHAYA R J W E,et al.Evidence of graphitic AB stacking order of graphite oxides[J].Journal of the American Chemical Society,2008,130:1362-1366.
[22] BARINOV A,MALCIOGLU O B,FABRIS S,et al.Initial stages of oxidation on graphitic surface:photoemission study and density functional theory calculations[J].Journal of Physical Chemistry C,2009,113(21):9009-9013.
[23] 邓尧,黄肖容,邬晓龄.氧化石墨烯复合材料的研究进展[J].材料导报,2012,26(8):84-87.DENG Y,HUANG X R,WU X L.Review on graphene oxide composites[J].Materials Review,2012,26(8):84-87.
[24] 周静.氧化石墨烯和石墨烯的制备、表征与应用[D].南京:南京大学,2011.ZHOU J.Synthesis,characterization and application of graphene oxide and graphene[D].Nanjing:Nanjing University,2011.
[25] 李彬.石墨烯/铜复合材料制备及性能研究[D].哈尔滨:哈尔滨工业大学,2012.LI B.Preparation and properties of graphene/copper composites[D].Harbin:Harbin Institute of Technology,2012.
[26] 魏炳伟.铜-石墨烯复合材料制备和性能的研究[D].重庆:重庆理工大学,2014.WEI B W.Research on preparation and properties of copper-graphene composites[D].Chongqing:Chongqing University of Technology,2014.
[27] 燕绍九,杨程,洪起虎,等.石墨烯增强铝基复合材料的研究[J].材料工程,2014,(4):1-6.YAN S J,YANG C,HONG Q H,et al.Research of graphene-reinforced aluminum matrix nanocomposites[J].Journal of Materials Engineering,2014,(4):1-6.
[28] 李多生,吴文政,QIN Q H,等.石墨烯/Al复合材料的微观结构及力学性能[J].中国有色金属学报,2015,25(6):1498-1504.LI D S,WU W Z,QIN Q H,et al.Microstructure and mechanical properties of graphene/Al composites[J].The Chinese Journal of Nonferrous Metals,2015,25(6):1498-1504.
[29] LIU X,LI J L,YU X W,et al.Graphene nanosheet/titanium carbide composites of a fine-grained structure and improved mechanical properties[J].Ceramics International,2016,42(1):165-172.
[30] ZHANG D D,ZHAN Z J.Strengthening effect of graphene derivatives in copper matrix composites[J].Journal of Alloys and Compounds,2016,654:226-233.
[31] CHEN F Y,YING J M,WANG Y F,et al.Effects of graphene content on the microstructure and properties of copper matrix composites[J].Carbon,2016,96:836-842.
[1] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[2] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[6] 黄希, 李小燕, 方晓东, 熊子成, 彭奕超, 韦丽华. 容错事故燃料包壳用FeCrAl合金的研究进展[J]. 材料工程, 2020, 48(3): 19-33.
[7] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[8] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[15] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn