Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (9): 109-114    DOI: 10.11868/j.issn.1001-4381.2016.09.017
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
双亲无规共聚物修饰碳纳米管/环氧树脂复合材料的制备与性能
马强, 罗静(), 陈元勋, 黄婧, 刘晓亚
江南大学 化学与材料工程学院 食品胶体与生物技术教育部重点实验室, 江苏 无锡 214122
Preparation and Performance of Amphiphilic Random Copolymer Noncovalently Modified MWCNTs/Epoxy Composite
Qiang MA, Jing LUO(), Yuan-xun CHEN, Jing HUANG, Xiao-ya LIU
The Key Laboratory of Food Colloids and Biotechnology(Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
全文: PDF(6037 KB)   HTML ( 14 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过自由基聚合法制备无规共聚物聚甲基丙烯酸缩水甘油酯/N-乙烯基咔唑P(GMA-co-NVC),并将其对多壁碳纳米管(MWCNTs)进行非共价键表面修饰得到P(GMA-co-NVC)/MWCNTs,再与环氧树脂(EP)复合,采用浇注成型法制备聚合物改性碳纳米管/环氧树脂复合材料。通过拉伸实验、电阻率测试和差式扫描量热法研究聚合物改性碳纳米管对环氧树脂力学、电学和热学性能的影响。结果表明:修饰后的碳纳米管比原始碳纳米管对环氧树脂有更明显的增强和增韧作用,当P(GMA-co-NVC)/MWCNTs质量分数为0.25%时,复合材料的体积电阻率为106Ω·m,相比于纯环氧树脂(1014Ω·m)下降了8个数量级,玻璃化转变温度(Tg)也由144℃提高至149℃。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马强
罗静
陈元勋
黄婧
刘晓亚
关键词 多壁碳纳米管环氧树脂N-乙烯基咔唑双亲无规共聚物非共价修饰    
Abstract

An amphiphilic random copolymer of polyglycidyl methacrylate-co-N-vinyl carbazole P(GMA-co-NVC) was synthesized by free radical polymerization and was used to noncovalently modify multi-walled carbon nanotubes (MWCNTs). The obtained P(GMA-co-NVC)/MWCNTs was mixed with epoxy resin and used to reinforce epoxy resin. Polymer modified carbon nanotubes/epoxy resin composites were prepared by a casting molding method. Tensile test, electrical resistivity test and differential scanning calorimeter(DSC) analysis were used to study the effect of polymer modified carbon nanotubes on the mechanical, electrical, and thermal properties of epoxy resin. The results show that the epoxy composite reinforced with P(GMA-co-NVC)/MWCNTs shows a remarkable enhancement in both tensile strength and elongation at break compared to either the pure epoxy or the pristine MWCNTs/epoxy composites. In addition, the electrical conductivity of epoxy is significantly improved and the volume resistivity decreases from 1014Ω·m to 106Ω·m with 0.25% mass fraction loading of P(GMA-co-NVC)/MWCNTs. Moreover, glass transition temperature of the epoxy composite also increases from 144℃ to 149℃.

Key wordsMWCNTs    epoxy resin    N-vinyl carbazole    amphiphilic random copolymer    noncovalent modification
收稿日期: 2015-01-29      出版日期: 2016-09-27
中图分类号:  TB383  
基金资助:江苏省产学研联创项目(BY2013015-08);江南大学研究生实践创新项目(SJLX_0519)
通讯作者: 罗静     E-mail: jingluo19801007@126.com
作者简介: 罗静(1980-), 女, 博士, 副教授, 从事功能高分子材料方面研究工作, 联系地址:江苏省无锡市蠡湖大道1800号江南大学化学与材料工程学院(214122), E-mail:jingluo19801007@126.com
引用本文:   
马强, 罗静, 陈元勋, 黄婧, 刘晓亚. 双亲无规共聚物修饰碳纳米管/环氧树脂复合材料的制备与性能[J]. 材料工程, 2016, 44(9): 109-114.
Qiang MA, Jing LUO, Yuan-xun CHEN, Jing HUANG, Xiao-ya LIU. Preparation and Performance of Amphiphilic Random Copolymer Noncovalently Modified MWCNTs/Epoxy Composite. Journal of Materials Engineering, 2016, 44(9): 109-114.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.09.017      或      http://jme.biam.ac.cn/CN/Y2016/V44/I9/109
Fig.1  共聚物P(GMA-co-NVC)的制备路线
Fig.2  共聚物P(GMA-co-NVC)的1H-NMR图
Fig.3  聚合物、裸碳纳米管和聚合物改性碳纳米管的红外光谱图
Fig.4  裸碳纳米管(1)和聚合物改性碳纳米管(2)的透射电镜照片(a)和扫描电镜照片(b)
Filler Mass fraction/% Tensile strength/MPa Elongation at break/%
No filler (pure epoxy) 0.00 42.51 2.00
Pristine MWCNTs 0.05 45.31 2.51
0.15 34.45 1.86
0.25 31.69 1.61
0.35 23.90 1.22
0.45 20.42 0.93
P(GMA-co-NVC)/MWCNTs 0.05 47.46 2.20
0.15 59.61 3.05
0.25 56.78 2.65
0.35 46.46 2.15
0.45 43.95 2.06
Table 1  裸碳纳米管和聚合物改性碳纳米管含量对环氧树脂复合材料力学性能的影响
Fig.5  聚合物改性碳纳米管含量对环氧树脂复合材料表面电阻率和体积电阻率的影响
Fig.6  不同含量聚合物改性碳纳米管的环氧树脂复合材料DSC曲线
1 王德中. 环氧树脂生产与应用[M]. 北京: 化学工业出版社, 2001: 196- 197.
1 WANG D Z . Production and Application of Epoxy Resin[M]. Beijing: Chemical Industry Press, 2001: 196- 197.
2 LIJIMAS. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354 (6348): 56- 58.
3 陈亚光, 蔡晓兰, 王开军, 等. 高能球磨法制备的CNTs/A1-5% Mg复合材料的力学性能及断裂特性[J]. 材料工程, 2014, (11): 55- 61.
3 CHEN Y G , CAI X L , WANG K J , et al. Mechanical properties and fracture feature of CNTs/Al-5% Mg composite prepared by high-energy ball milling[J]. Journal of Materials Engineering, 2014, (11): 55- 61.
4 黑艳伟, 张宝艳, 周正刚, 等. MWNT/PEK-C导电薄膜的制备及其性能研究[J]. 航空材料学报, 2014, 34 (2): 46- 50.
4 HEI Y W , ZHANG B Y , ZHOU Z G , et al. Preparation and properties of MWNT/PEK-C electrical conductive film[J]. Journal of Aeronautical Materials, 2014, 34 (2): 46- 50.
5 GOJNY F H , NASTALCZYK J , ROSLAMIEC Z , et al. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites[J]. Chemical Physics Letters, 2003, 370 (5): 820- 824.
6 ZHU J , KIM J D , PENG H Q , et al. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization[J]. Nano Letters, 2003, 3 (8): 1107- 1113.
doi: 10.1021/nl0342489
7 EITAN A , JIANG K Y , DUKES D , et al. Surface modification of multiwalled carbon nanotubes:toward the tailoring of the interface in polymer composites[J]. Chemical of Materials, 2003, 15 (16): 3198- 3201.
doi: 10.1021/cm020975d
8 STEUERMAN D W , STAR A , NARIZZANO R , et al. Interaction between conjugated polymers and single-walled carbon nanotubes[J]. Journal of Physical Chemistry B, 2002, 106 (12): 3124- 3130.
doi: 10.1021/jp014326l
9 TENG C C , MA C C M , LU C H , et al. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites[J]. Carbon, 2011, 49 (15): 5107- 5116.
doi: 10.1016/j.carbon.2011.06.095
10 郑伟玲, 肖潭, 朱朦琪, 等. 聚苯乙炔包覆多壁碳纳米管的制备及其分散性[J]. 物理化学学报, 2009, 25 (11): 2373- 2379.
10 ZHENG W L , XIAO T , ZHU M Q , et al. Preparation and dispersivity of multiwalled carbon nanotubes coated by poly (phenylacetylene)[J]. Acta Physico-Chimica Sinica, 2009, 25 (11): 2373- 2379.
11 LI M , LI G L , ZHANG Z G , et al. Self-assembly of pH-responsive and fluorescent comb-like amphiphilic copolymers in aqueous media[J]. Polymer, 2010, 51 (15): 3377- 3386.
doi: 10.1016/j.polymer.2010.05.032
12 ZHU Y , ZHENG X F , YU B R , et al. Efficient gene carriers composed of 2-hydroxypropyl-β-cyclodextrin, ethanolamine-functionalized poly (glycidylmethacrylate), and poly ((2-dimethyl amino) ethyl methacrylate) by combination of ATRP and click chemistry[J]. Macromolecular Bioscience, 2014, 14 (8): 1135- 1148.
doi: 10.1002/mabi.201400062
13 何三雄, 高保娇, 申艳玲. 室温下甲基丙烯酸缩水甘油酯的原子转移自由基溶液聚合反应[J]. 高分子材料科学与工程, 2006, 22 (5): 62- 65.
13 HE S X , GAO B J , SHEN Y L . Atom transfer radical polymerization of glycidyl methacrylate in solution system at room temperature[J]. Polymer Materials Science and Engineering, 2006, 22 (5): 62- 65.
14 ATES M , YILMAZ K , SHAHRYARI A , et al. A study of the electrochemical behavior of poly[J]. IEEE Sensors Journal, 2008, 8 (10): 1628- 1639.
doi: 10.1109/JSEN.2008.929069
15 董伟.含咔唑类聚合物合成及其光导性能研究[D].哈尔滨:哈尔滨理工大学, 2008.
15 DONG W.Study on the preparation of carbazole-based polymers and the properties of photoconductivity[D].Harbin:Harbin University of Science and Technology, 2008.
16 LOKITZ B S , WEI J F , HINESTROSA J P , et al. Manipulating interfaces through surface confinement of poly (glycidyl methacrylate)-block-poly (vinyldimethylazlactone), a dually reactive block copolymer[J]. Macromolecules, 2012, 45 (16): 6438- 6449.
doi: 10.1021/ma300991p
17 FAKIOGLU E , YURUM Y , VEZIROGLU T N . A review of hydrogen storage systems based on boron and its compounds[J]. International Journal of Hydrogen Energy, 2004, 29 (13): 1371- 1376.
doi: 10.1016/j.ijhydene.2003.12.010
18 CHEN J , WU F . Review of hydrogen storage in inorganic fullerene-like nanotubes[J]. Applied Physics A, 2004, 78 (7): 989- 994.
doi: 10.1007/s00339-003-2419-7
19 GOJNY F H , SCHULTE K . Functionalisation effect on the thermo-mechanical behavior of multi-wall carbon nanotube/epoxy-composites[J]. Composites Science and Technology, 2004, 64 (15): 2303- 2308.
doi: 10.1016/j.compscitech.2004.01.024
[1] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[2] 许良, 涂宜鸣, 崔浩, 周松. 海水环境下老化周期对T800碳纤维/环氧树脂复合材料的影响[J]. 材料工程, 2022, 50(12): 89-94.
[3] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[4] 张代军, 陈俊, 包建文, 钟翔屿, 陈祥宝. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响[J]. 材料工程, 2021, 49(6): 178-184.
[5] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
[6] 周松, 贾耀雄, 许良, 边钰博, 涂宜鸣. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 49(10): 138-143.
[7] 王钰登, 郑亚萍, 宋珊, 姚东东. SiO2无溶剂纳米流体粒径和含量对环氧树脂力学和热性能的影响[J]. 材料工程, 2021, 49(10): 156-163.
[8] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[9] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[10] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[11] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[12] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[13] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[14] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[15] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn