Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (9): 121-128    DOI: 10.11868/j.issn.1001-4381.2016.09.019
  综述 本期目录 | 过刊浏览 | 高级检索 |
航空发动机用聚酰亚胺树脂基复合材料衬套研究进展
王云飞1,2, 张朋3, 刘刚3,*(), 肇研1, 包建文3
1 北京航空航天大学 材料科学与工程学院, 北京 100191
2 中国航空规划设计研究总院有限公司, 北京 100120
3 中航工业复合材料技术中心, 北京 101300
Progress in Research on Polyimide Composite Bushings for Aeroengine
Yun-fei WANG1,2, Peng ZHANG3, Gang LIU3,*(), Yan ZHAO1, Jian-wen BAO3
1 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2 AVIC China Aviation Planning and Design Institute(Group) Co., Ltd., Beijing 100120, China
3 AVIC Composites Center, Beijing 101300, China
全文: PDF(1099 KB)   HTML ( 19 )  
输出: BibTeX | EndNote (RIS)      
摘要 

综述了航空发动机用聚酰亚胺树脂基复合材料衬套的特性及其研究进展与应用现状,重点介绍了石墨填充复合材料衬套、纤维编织增强复合材料衬套及短切纤维增强复合材料衬套的制备技术、性能特点与应用发展,指出低成本、连续化生产、耐高温及长使用寿命是未来航空发动机聚酰亚胺树脂基复合材料衬套及其材料体系的主要发展方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王云飞
张朋
刘刚
肇研
包建文
关键词 航空发动机聚酰亚胺复合材料衬套    
Abstract

Properties, research progress and application status of polyimide composite bushings for aeroengine were reviewed. The manufacture technology, performance and applications of graphite filled composite bushings, braid composite bushings and chopped fiber composite bushings were primarily introduced. It is pointed out that low cost, continuous manufacture process, high heat resistance and long-service life will be the main directions of polyimide composite bushings for aeroengine and its materials system in the future.

Key wordsaeroengine    polyimide    composite    bushing
收稿日期: 2014-11-06      出版日期: 2016-09-27
中图分类号:  TB332  
通讯作者: 刘刚     E-mail: liugang@iccas.ac.cn
作者简介: 刘刚(1978-),男,博士,研究员,主要从事高性能树脂基复合材料相关研究,联系地址:北京市81信箱3分箱(100095),E-mail:liugang@iccas.ac.cn
引用本文:   
王云飞, 张朋, 刘刚, 肇研, 包建文. 航空发动机用聚酰亚胺树脂基复合材料衬套研究进展[J]. 材料工程, 2016, 44(9): 121-128.
Yun-fei WANG, Peng ZHANG, Gang LIU, Yan ZHAO, Jian-wen BAO. Progress in Research on Polyimide Composite Bushings for Aeroengine. Journal of Materials Engineering, 2016, 44(9): 121-128.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.09.019      或      http://jme.biam.ac.cn/CN/Y2016/V44/I9/121
Category Reinforced material Resin matrix
Graphite filled composite bushing Graphite Thermoplastic polyimide
Braid composite bushing Braided fiber Thermoplastic polyimide Thermosetting polyimide
Chopped fiber composite bushing Chopped fiber Thermosetting polyimide
Table 1  聚酰亚胺复合材料衬套分类
Fig.1  线性聚酰亚胺分子结构及合成反应过程[12]
Fig.2  SP-21的DMA曲线
Brand Mass fraction of graphite/% Performance feature
SP-21 15 Increased wear resistance and low friction
SP-22 40 Low thermal expansion and dimensional stability
Table 2  DuPontTM Vespel®系列主要衬套材料的组成及性能特点[22]
Brand Tensile strength/MPa Elongation/% Flexural strength/MPa Flexural modulus/MPa
23℃ 260℃ 23℃ 260℃ 23℃ 260℃ 23℃ 260℃
SP-21 65.5 37.9 4.5 3.0 110.3 62 3792 2551
SP-22 51.7 23.4 3.0 2.0 89.6 44.8 4826 2758
Brand Compression modulus at 23℃/MPa Notched impact strength/
(J·m-1)
Friction coefficient* Wear rate*/
(10-10·m·s-1)
SP-21 2895 42.7 0.24 6.30
SP-22 3275 0.30 4.20
Brand Coefficient of thermal expansion/(10-6-1) Density/(g·cm-3) Oxygen index/%
SP-21 49 1.51 49
SP-22 38 1.65
Table 3  DuPontTM Vespel®系列主要衬套材料的物理与力学性能[22]
Property Temperature Value Test method
Tensile strength/MPa RT 69.64 ASTM D638
260℃ 35.85 ASTM D638
Tensile modulus/GPa RT 4.48 ASTM D638
Elongation/% RT 6.10 ASTM D638
260℃ 2.30 ASTM D638
Compression modulus/GPa RT 2.14 ASTM D695
260℃ 1.72 ASTM D695
Density/ (g·cm-3) RT 1.48 ASTM D792
Coefficient of friction RT to 371℃ 0.2
Tg/℃ RT to 399℃ 391
Coefficient of thermal
expansion/(10-6-1)
RT to 232℃ 42 ASTM E831
Table 4  Superimide® T-115的主要性能[23]
Brand Constitution Impact strength/
(kJ·m-2)
Density/
(g·cm-3)
Thermal expansion coefficient/
(10-6-1)
Coefficient of friction
YS10-021 YS10, 15%
graphite
25 1.50 50 0.15
YS20-023 YS20, 10%
graphite
100 0.10-0.30
YS-280 Imide copolymer,
15% graphite
15 1.49-1.51 38 0.29
YS-330-1 Imide copolymer,
15% graphite
19.6 1.49-1.51 34 0.30
YS-330-2 Imide copolymer,
40% graphite
7 1.64-1.68 0.19
YS-380-1 Imide copolymer,
5% graphite
15 1.44-1.47
Table 5  RATEM®系列产品的主要物理与力学性能[24]
Vespel® CP Tg/℃ Thermal expansion
coefficient/
(10-6-1)
Density/
(g·cm-3)
Mass loss
rate*/%
CP-8000 360 8.3 1.52 3.0(357℃)
CP-8001 349 8.3 1.54 6.2(357℃)
CP-8002 330 7.2 1.47 2.6(327℃)
Table 6  DuPontTM Vespel® CP系列复合材料衬套主要性能[22]
Property Temperature Value Test method
Tensile strength/MPa RT 117.2 ASTM D3039
Tensile modulus/GPa RT 13.79 ASTM D3039
Elongation/% RT 3.0 ASTM D3039
Compressive strength/MPa RT 242 ASTM D695
Compression modulus/GPa RT 5.17 ASTM D695
Density/(g·cm -3) RT 1.65 ASTM D792
Tg/℃ RT to 399℃ 385 ASTM E1640
Coefficient of thermalexpansion/(10 -6-1) RT to 232℃ 1.5 ASTM E831
Coefficient of friction RT to 371℃ 0.19 ASTM G99
Mass loss rate/%(100h, 0.48MPa) 371℃ 2.5 E50TF534
Table 7  Maverick MVK-19的主要性能[23]
Fig.3  BR710发动机静止叶片衬套[22]
Fig.4  短切纤维预浸料制备流程图[25]
Fig.5  AMB-21单体结构[52]
Resin Tg(TMA)/℃ Mass loss rate*/%
AMB-17XLD 367 8.8
AMB-17XLD(chopped fiber) 313 9.1
PMR-15 398 7.2
Table 8  AMB-17XLD与PMR-15复合材料衬套性能对比[25]
Temperature/
Tensile strength/
MPa
Tensile modulus/
GPa
Compressive strength/
MPa
Density/
(g·cm-3)
Coefficient of friction
23 82.74 15.86 248.22 1.5 0.1-0.2
260 55.16 11.03 172.28
Table 9  Fibercomp复合材料的主要性能[53]
1 王增强. 高性能航空发动机制造技术及其发展趋势[J]. 航空制造技术, 2007, (1): 52- 55.
1 WANG Z Q . High performance aeroengine manufacturing technology and development trend[J]. Aeronautical Manufacturing Technology, 2007, (1): 52- 55.
2 包建文, 陈祥宝. 发动机用耐高温聚酰亚胺树脂基复合材料的研究进展[J]. 航空材料学报, 2012, 32 (6): 1- 13.
2 BAO J W , CHEN X B . Advance in high temperature polyimide resin matrix composites for aeroengine[J]. Journal of Aeronautical Materials, 2012, 32 (6): 1- 13.
3 陈祥宝. 高性能树脂基体[M]. 北京: 化学工业出版社, 1999.
3 CHEN X B . High-performance Resin Matrix[M]. Beijing: Chemical Industry Press, 1999.
4 KRISHNAMACHARI P , LOU J Z , SANKAR J , et al. Characterization of fourth-generation high-temperature discontinuous fiber molding compounds[J]. International Journal of Polymer Analysis and Characterization, 2009, 14 (7): 588- 599.
doi: 10.1080/10236660903225452
5 DEXTER H B , DAVIS J G Jr . Graphite/polyimide composites[J]. British Journal of Psychiatry:the Journal of Mental Science, 1979, 143, 301- 303.
6 TAMAI S , KUROKI T , SHIBUYA A , et al. Synthesis and characterization of thermally stable semicrystalline polyimide based on 3, 4'-oxydianiline and 3, 3', 4, 4'-biphenyltetracarboxylic dianhydride[J]. Polymer, 2001, 42 (6): 2373- 2378.
doi: 10.1016/S0032-3861(00)00610-8
7 ABADIE M J M , VOYTEKUNAS V Y , RUSANOV A L . State of the art organic matrices for high-performance composites:a review[J]. Iranian Polymer Journal, 2006, 15 (1): 65- 77.
8 赵伟栋, 王磊, 潘玲英, 等. 聚酰亚胺复合材料研究进展[J]. 宇航材料工艺, 2013, 43 (4): 14- 19.
8 ZHAO W D , WANG L , PAN L Y , et al. Advance in polyimide composites[J]. Aerospace Materials and Technology, 2013, 43 (4): 14- 19.
9 YOKOTA R . Recent trends and space applications of polyimides[J]. Journal of Photopolymer Science and Technology, 1999, 12 (2): 209- 216.
doi: 10.2494/photopolymer.12.209
10 DANLY J C Sr.Composite and self-lubricating bushing[P].US Patent:US5094548, 1992-03-10.
11 DINGWELL W T, O'REILLY D P, MESING T C.Variable stator vane bushing[P].US Patent:US 2007/6474941, 2002-11-05.
12 丁孟贤. 聚酰亚胺:化学、结构与性能的关系及材料[M]. 北京: 科学出版社, 2006.
12 DING M X . Polyimide:Materials and Relationships between Properties with Chemistry, Structure[M]. Beijing: Science Press, 2006.
13 HERGENROTHER P M . The use, design, synthesis, and properties of high performance/high temperature polymers:an overview[J]. High Performance Polymers, 2003, 15 (1): 3- 45.
14 吴国光. 聚酰亚胺粉体的制造与应用[J]. 信息记录材料, 2012, 13 (4): 44- 50.
14 WU G G . Manufacturing and application of polyimide powder[J]. Information Recording Materials, 2012, 13 (4): 44- 50.
15 张晓蕾, 肖继军, 李彦涛, 等. 联苯型聚酰亚胺模塑粉亚胺化工艺及其力学性能的研究[J]. 塑料工业, 2007, 35 (4): 44- 46.
15 ZHANG X L , XIAO J J , LI Y T , et al. Study of imidization and mechanical properties of biphenyl-polyimide moulding powder[J]. China Plastics Industry, 2007, 35 (4): 44- 46.
16 VORA R H , GOH S H . Designed poly (ether-imide) s and fluoro-copoly (ether-imide) s:synthesis, characterization and their film properties[J]. Materials Science and Engineering:B, 2006, 132 (1): 24- 33.
17 CHENG C , CHEN J , CHEN F , et al. High-strength and high-toughness polyimide nanofibers:synthesis and characterization[J]. Journal of Applied Polymer Science, 2010, 116 (3): 1581- 1586.
18 LIAW D J , WANG K L , HUANG Y C , et al. Advanced polyimide materials:syntheses, physical properties and applications[J]. Progress in Polymer Science, 2012, 37 (7): 907- 974.
doi: 10.1016/j.progpolymsci.2012.02.005
19 BRUCE R W.Variable stator vane bushings and washers[P].US Patent:US 2007/7207770, 2007-04-24.
20 BIERMANN-WEAVER J M, JAIN V K, LAMPORT R A, et al.Resin mixture for friction materials[P].US Patent:US 1998/5753018, 1998-05-19.
21 CHANG G E C, JONES R J.Fiber reinforced thermoplastic resin matrix composites[P].US Patent:US 1989/4880584, 1989-11-14.
22 DuPont Corp.DuPontTM Vespel® Literature[EB/OL].[2014-05-13].http://www2.dupont.com/Vespel/en_US/pfo/vespel_literature.html.
23 Maverick Molding Company.Maverick Molding Company technical data[EB/OL].[2014-05-13].http://www.maverickmolding.com/molded-components/resources-md/material-data-sheets-md.
24 上海市合成树脂研究所, 上海华谊(集团)公司.RATEM®(雷泰)聚酰亚胺系列产品[EB/OL].[2014-05-09].http://www.chem-syn.com/product.asp?bclass=1.
25 GRAY R A.Low-cost Production of Composite Bushings for Jet Engine Applications[R].NASA/CR-1998-208515.Washington, DC:NASA, 1998.
26 SAEED M B , ZHAN M S . Effects of monomer structure and imidization degree on mechanical properties and viscoelastic behavior of thermoplastic polyimide films[J]. European Polymer Journal, 2006, 42 (8): 1844- 1854.
doi: 10.1016/j.eurpolymj.2006.03.004
27 曲希明, 冀棉, 赵伟栋, 等. 耐371℃ PMR型含异构联苯结构的聚酰亚胺树脂及复合材料[J]. 宇航材料工艺, 2009, 39 (2): 50- 53.
27 QU X M , JI M , ZHAO W D , et al. PMR polyimide resins with asymmetric biphenylimide chain segments for 371℃ application[J]. Aerospace Materials and Technology, 2009, 39 (2): 50- 53.
28 ABDALLA M O , DEAN D , CAMPBELL S . Viscoelastic and mechanical properties of thermoset PMR-type polyimide-clay nanocomposites[J]. Polymer, 2002, 43 (22): 5887- 5893.
doi: 10.1016/S0032-3861(02)00498-6
29 VANNUCCI R D.PMR-15 Polyimide Modifications for Improved Prepreg Tack[R].NASA-TM-82951, Washington, DC:NASA, 1982.
30 ADAMCZAK A D , SPRIGGS A A , FITCH D M , et al. Blistering in carbon-fiber-filled fluorinated polyimide composites[J]. Polymer Composites, 2011, 32 (2): 185- 192.
doi: 10.1002/pc.v32.2
31 刘强, 王晓亮, 蒋蔚, 等. BMP系列热固性聚酰亚胺树脂基复合材料的应用进展[J]. 航空制造技术, 2009, (增刊1): 22- 24.
31 LIU Q , WANG X L , JIANG W , et al. Application progress of BMP thermosetting polyimide resin matrix composites[J]. Aeronautical Manufacturing Technology, 2009, (Suppl 1): 22- 24.
32 徐颖, 周华, 程先华. 碳纤维增强聚酰亚胺复合材料的摩擦磨损性能[J]. 江苏大学学报(自然科学版), 2011, 32 (2): 167- 170.
32 XU Y , ZHOU H , CHENG X H . Friction and wear behavior of thermoplastic polyimide reinforced with carbon fiber[J]. Journal of Jiangsu University (Natural Science Edition), 2011, 32 (2): 167- 170.
33 陈建升, 李仲晓, 陶志强, 等. 含氟苯乙炔苯胺封端聚酰亚胺的合成与性能研究[J]. 高分子学报, 2007, (3): 235- 239.
33 CHEN J S , LI Z X , TAO Z Q , et al. Synthesis and characterization of polyimide end-capped with fluorinated phenylethynylaniline[J]. Acta Polymerica Sinica, 2007, (3): 235- 239.
34 BHARGAVA P.High temperature properties of HFPE-Ⅱ-52 polyimide resin and composites[D].Ithaca:Cornell University, 2007.
35 SLINEY H E, JOHNSON R L.Graphite-fiber-polyimide Composites for Spherical Bearings to 340℃(650℉)[M].NASA-TN-D-7078.Washington, DC:NASA, 1972.
36 FRIEDRICH K , SUE H J , LIU P , et al. Scratch resistance of high performance polymers[J]. Tribology International, 2011, 44 (9): 1032- 1046.
doi: 10.1016/j.triboint.2011.04.008
37 宋旻键, 舒卫国, 杨熙, 等. 小尺寸薄壁耐高温玻璃钢衬套的制备及其轴向压缩性能[J]. 航空制造技术, 2009, (增刊1): 129- 132.
37 SONG M J , SHU W G , YANG X , et al. Preparation and axial compressive property of small size thin-wall high temperature GFRP bush[J]. Aeronautical Manufacturing Technology, 2009, (Suppl 1): 129- 132.
38 SLINEY H E, JACOBSON T P.Performance of Graphite Fiber-Reinforced Polyimide Composites in Self-aligning Plain Bearings to 315℃[R].NASA-TM-X-71667.Washington, DC:NASA, 1975.
39 BOWMAN C L, SUTTER J K, THESKEN J C, et al.SAMPE Symposium and Exhibition, 46 th International[C].BocaRaton:CRC Press, 2001.
40 BLOOM J S, FEIST T P, GEORGE D E.Polyimide compositions with improved wear resistance and friction at high PV[P].US Patent:5, 789, 523, 1998-08-04.
41 JIA J H , ZHOU H D , GAO S Q , et al. A comparative investigation of the friction and wear behavior of polyimide composites under dry sliding and water-lubricated condition[J]. Materials Science and Engineering:A, 2003, 356 (1): 48- 53.
42 HUA X Y . New technology for glass fiber reinforced polyimide moulding compound[J]. China Plastics Industry, 2000, 28 (6): 19- 20.
43 BOLVARI A , GLENN S , JANSSEN R , et al. Wear and friction of aramid fiber and polytetrafluoroethylene filled composites[J]. Wear, 1997, 203 (96): 697- 702.
44 YUDIN V E , GOYKHMAN M Y , BALIK K , et al. Carbonization behaviour of some polyimide resins reinforced with carbon fibers[J]. Carbon, 2000, 38 (1): 5- 12.
doi: 10.1016/S0008-6223(99)00073-1
45 WILSON D . PMR-15 processing, properties and problems-a review[J]. British Polymer Journal, 1988, 20 (5): 405- 416.
doi: 10.1002/(ISSN)1934-256X
46 STENZENBERGER H D , HERZOG M , RÖMER W , et al. Development of thermosetting polyimide resins[J]. British Polymer Journal, 1983, 15 (1): 2- 12.
doi: 10.1002/(ISSN)1934-256X
47 任菲菲, 王永为, 李煌, 等. 系列聚酰亚胺的制备及其结构表征[J]. 合成树脂及塑料, 2009, 26 (2): 19- 22.
47 REN F F , WANG Y W , LI H , et al. Preparation and characterization of series polyimides[J]. China Synthetic Resin and Plastics, 2009, 26 (2): 19- 22.
48 杨士勇, 高生强, 胡爱军, 等. 耐高温聚酰亚胺树脂及其复合材料的研究进展[J]. 宇航材料工艺, 1999, 30 (1): 1- 6.
48 YANG S Y , GAO S Q , HU A J , et al. Progress in high temperature polyimide matrix resins and carbon fiber reinforced composites[J]. Aerospace Materials and Technology, 1999, 30 (1): 1- 6.
49 MEYER G W , PAK S J , LEE Y J , et al. New high-performance thermosetting polymer matrix material systems[J]. Polymer, 1995, 36 (11): 2303- 2309.
doi: 10.1016/0032-3861(95)95311-N
50 陈建升, 左红军, 高群峰, 等. 苯乙炔基封端PMR型聚酰亚胺树脂的制备与性能研究[J]. 航空材料学报, 2007, 27 (5): 66- 70.
50 CHEN J S , ZUO H J , GAO Q F , et al. Preparation and characterization of PMR-type polyimide resin terminated with phenylethynyl group[J]. Journal of Aeronautical Materials, 2007, 27 (5): 66- 70.
51 SRIVASTAVA V K , PATHAK J P . Friction and wear properties of bushing bearing of graphite filled short glass fibre composites in dry sliding[J]. Wear, 1996, 197 (1): 145- 150.
52 VANNUCCI R D.Experiments Related to the Fabrication of Carbon Fiber/AMB-21 Polyimide Composite Tubes Using the RTM Process[R].NASA-CP-10189.Washington, DC:NASA, 1996.
53 Foundry Service & Supplies, Inc.Data sheet for Fibercomp (short graphite fiber reinforced polyimide composite:up to 850℉)[EB/OL].[2014-06-21].http://supplies.foundryservice.com/Asset/FiberComp-Data-Sheet.pdf
[1] 熊京鹏, 刘勇. 镁基复合材料界面调控研究进展[J]. 材料工程, 2023, 51(1): 1-15.
[2] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[3] 吴立清, 冯柳, 毛晓璇, 穆洪亮, 刘志超, 牛金叶, 高蔷. 量子点/碳复合材料在碱金属离子电池的应用进展[J]. 材料工程, 2023, 51(1): 36-51.
[4] 王宪, 贺雍律, 唐俊, 刘钧, 黄贤俊, 翟多才, 张鉴炜. Al颗粒夹层CFRP复合材料力学及电磁屏蔽性能[J]. 材料工程, 2023, 51(1): 140-147.
[5] 曾宏伟, 李红, 姚彧敏, 杨敏, 陶银萍, 任慕苏, 孙晋良. 热解碳含量对碳/碳-聚酰亚胺复合材料性能的影响[J]. 材料工程, 2023, 51(1): 148-154.
[6] 鞠录岩, 张建兵, 马玉钦, 张钊源, 魏文澜. ZrW2O8-Cf/E51低/负热膨胀复合材料制备及超声时间对其热膨胀和力学性能的影响[J]. 材料工程, 2023, 51(1): 171-178.
[7] 唐婧缘, 龙依婷, 黄旭, 蒲琳钰. 核-双壳BT@TiO2@PDA纳米粒子的制备及其复合薄膜的介电性能[J]. 材料工程, 2022, 50(9): 59-69.
[8] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[9] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[10] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[11] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[12] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[13] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[14] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[15] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn