Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (11): 56-60    DOI: 10.11868/j.issn.1001-4381.2016.11.009
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
负载银中空纳米碳纤维的制备及电化学性能
李甫1, 康卫民2, 程博闻2,*(), 费鹏飞2, 董永春1
1 天津工业大学 纺织学院, 天津 300387
2 天津工业大学 分离膜与膜过程国家重点实验室, 天津 300387
Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers
Fu LI1, Wei-min KANG2, Bo-wen CHENG2,*(), Peng-fei FEI2, Yong-chun DONG1
1 School of Textile, Tianjin Polytechnic University, Tianjin 300387, China
2 State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
全文: PDF(3149 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为了提高碳基超级电容器电极的电化学性能,采用同轴静电纺丝和原位还原技术相结合的方法制备聚丙烯腈基(PAN-based)负载银纳米碳纤维,经过热处理后得到负载银的中空纳米碳纤维,考察了所制得负载银中空纳米碳纤维的形貌、结构及电化学性能。结果表明:原位还原技术能顺利将银颗粒成功负载到中空纳米碳纤维表面,且负载银有利于提高中空纳米碳纤维的电化学性能,表现为电化学反应可逆性和电容量均有所增加,电荷转移阻抗减小。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李甫
康卫民
程博闻
费鹏飞
董永春
关键词 同轴静电纺丝纳米碳纤维超级电容器    
Abstract

Silver doped PAN-based hollow carbon nanofibers were prepared combining co-electrospinning with in situ reduction technique subsequently heat treatment to improve the electrochemical performances of carbon based supercapacitor electrodes. The morphology, structure and electrochemical performances of the resulted nanofiber were studied. The results show that the silver nanoparticles can be doped on the surface of hollow carbon nanofibers and the addition of silver favors the improvement of the electrochemical performances, exhibiting the enhanced reversibility of electrode reaction and the capacitance and the reduced charge transfer impedance.

Key wordsCo-electrospinning    silver    carbon nanofiber    supercapacitor
收稿日期: 2015-03-13      出版日期: 2016-11-22
中图分类号:  TQ342  
基金资助:国家自然科学基金(51173131);天津市重点基金项目(13JCZDJC32500)
通讯作者: 程博闻     E-mail: bowen15@tjpu.edu.cn
作者简介: 程博闻(1963-), 男, 教授, 博士生导师, 从事新型碳纤维的研究, 联系地址:天津市天津工业大学(300387), E-mail:bowen15@tjpu.edu.cn
引用本文:   
李甫, 康卫民, 程博闻, 费鹏飞, 董永春. 负载银中空纳米碳纤维的制备及电化学性能[J]. 材料工程, 2016, 44(11): 56-60.
Fu LI, Wei-min KANG, Bo-wen CHENG, Peng-fei FEI, Yong-chun DONG. Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers. Journal of Materials Engineering, 2016, 44(11): 56-60.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.11.009      或      http://jme.biam.ac.cn/CN/Y2016/V44/I11/56
Fig.1  纳米纤维的表面形貌(a), (b) SEM; (c) TEM
Fig.2  纳米纤维膜的FT-IR谱图
Fig.3  纳米纤维膜的XRD谱图
Fig.4  纳米纤维膜的循环伏安曲线
Fig.5  纳米纤维膜的交流阻抗曲线
Fig.6  纳米纤维膜的恒流充放电曲线
1 贾志军, 王俊, 王毅. 超级电容器电极材料的研究进展[J]. 储能科学与技术, 2014, 3 (4): 322- 338.
1 JIA Z J , WANG J , WANG Y . Research progress of the electrode materials for electrochemical capacitors[J]. Energy Storage Science and Technology, 2014, 3 (4): 322- 338.
2 袁磊, 王朝阳, 付志兵, 等. 超级电容器电极材料的研究进展[J]. 材料导报, 2010, 24 (9): 11- 14.
2 YUAN L , WANG C Y , FU Z B , et al. Research progress in electrode materials for supercapacitor[J]. Materials Review, 2010, 24 (9): 11- 14.
3 ZHANG L L , ZHAO X S . Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38 (9): 2520- 2531.
doi: 10.1039/b813846j
4 SIMON P , YURY G . Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7 (11): 845- 854.
doi: 10.1038/nmat2297
5 PANDOLFO A G , HOLLENKAMP A F . Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157 (1): 11- 27.
doi: 10.1016/j.jpowsour.2006.02.065
6 FRACKOWIAK E , BEGUIN F . Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39 (6): 937- 950.
doi: 10.1016/S0008-6223(00)00183-4
7 LANG X Y , AKIHIKO H , TAKESHI F , et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology, 2011, 6 (4): 232- 236.
doi: 10.1038/nnano.2011.13
8 GRAEME A S , PON K , ADAM S B . Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196 (1): 1- 12.
doi: 10.1016/j.jpowsour.2010.06.084
9 田艳红, 付旭涛, 吴伯荣. 超级电容器用多孔碳材料的研究进展[J]. 电源技术, 2002, 26 (6): 466- 469.
9 TIAN Y H , FU X T , WU B R . Development of porous carbon materials for electric double-layer capacitor[J]. Chinese Journal of Power Sources, 2002, 26 (6): 466- 469.
10 杨裕生, 曹高萍. 电化学电容器用多孔炭的性能调节[J]. 电池, 2006, 36 (1): 34- 36.
10 YANG Y S , CAO G P . Adjustment to properties of porous carbon for electrochemical capacitors[J]. Battery Bimonthly, 2006, 36 (1): 34- 36.
11 CHO M Y , KIM M H , KIM H K , et al. Electrochemical performance of hybrid supercapacitor fabricated using multi-structured activated carbon[J]. Electrochemistry Communications, 2014, 47, 5- 8.
doi: 10.1016/j.elecom.2014.07.012
12 QU D Y , WANG L L , ZHENG D , et al. An asymmetric supercapacitor with highly dispersed nano-Bi2O3 and active carbon electrodes[J]. Journal of Power Sources, 2014, 269, 129- 135.
doi: 10.1016/j.jpowsour.2014.06.084
13 MA C , LI Y J , SHI J L , et al. High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching[J]. Chemical Engineering Journal, 2014, 249, 216- 225.
doi: 10.1016/j.cej.2014.03.083
14 HAO P , ZHAO Z H , TIAN J , et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode[J]. Nanoscale, 2014, 6 (20): 12120- 12129.
doi: 10.1039/C4NR03574G
15 De SOUZA V H R , OLIVEIRA M M , ZARBIN A J G . Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid-liquid interfaces[J]. Journal of Power Sources, 2014, 260, 34- 42.
doi: 10.1016/j.jpowsour.2014.02.070
16 ZHU Y L , SHI K Y , IGOR Z . Polypyrrole coated carbon nanotubes for supercapacitor devices with enhanced electrochemical performance[J]. Journal of Power Sources, 2014, 268, 233- 239.
doi: 10.1016/j.jpowsour.2014.06.046
17 FAN L Q , LIU G J , WU J H , et al. Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes[J]. Electrochemica Acta, 2014, 137, 26- 33.
doi: 10.1016/j.electacta.2014.05.137
18 GAO X L , XING W , ZHOU J , et al. Superior capacitive performance of active carbons derived from enteromorphaprolifera[J]. Electrochemica Acta, 2014, 133, 459- 466.
doi: 10.1016/j.electacta.2014.04.101
19 LI F , KANG W M , CHENG B W , et al. Preparation and catalytic behavior of hollow Ag/carbon nanofibers[J]. Catalysis Communications, 2015, 69, 150- 153.
doi: 10.1016/j.catcom.2015.05.030
20 HWANG K L , EUN H J , CHI K B , et al. One-step preparation of ultrafine poly (acrylonitrile) fibers containing silver nanoparticles[J]. Materials Letters, 2005, 59 (23): 2977- 2980.
doi: 10.1016/j.matlet.2005.05.005
21 AU T H , BEOMSEOK T , JUN S P . Non-woven mats of poly (vinyl alcohol)/chitosan blends containing silver nanoparticles: Fabrication and characterization[J]. Carbohydrate Polymers, 2010, 82 (2): 472- 479.
doi: 10.1016/j.carbpol.2010.05.016
22 KYUNG H H . Preparation and properties of electrospun poly (vinyl alcohol)/silver fiber web as wound dressings[J]. Polymer Engineering& Science, 2007, 47 (1): 43- 49.
23 王玉林, 万怡灶, 成国祥, 等. 活性碳纤维载银工艺及其表面银颗粒的形态特征[J]. 材料工程, 1998, (8): 28- 30.
23 WANG Y L , WAN Y Z , CHENG G X , et al. Silver-coating process of activated carbon fiber and its surface morphology[J]. Journal of Materials Engineering, 1998, (8): 28- 30.
24 CHAO D M , CUI L L , ZHANG J F , et al. Preparation of oligoaniline derivative/polyvinyllpyrrolidone nanofibers containing silver nanoparticles[J]. Synthetic Metals, 2009, 159 (5): 537- 540.
25 ZHANG P , SHAO C L , ZHANG Z Y . In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol[J]. Nanoscale, 2011, 3 (8): 3357- 3363.
doi: 10.1039/c1nr10405e
26 WANG Y H , IGOR Z . Cathodic electrodeposition of Ag-doped manganese dioxide films for electrodes of electrochemical supercapacitors[J]. Materials Letters, 2011, 65 (12): 1759- 176.
doi: 10.1016/j.matlet.2011.03.074
[1] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[2] 王超君, 王楠, 陈翔, 王继贤, 彭思侃, 王晨, 齐新, 刘佳让, 戴圣龙, 燕绍九. 锌离子电容器正极材料研究进展[J]. 材料工程, 2022, 50(12): 51-59.
[3] 陈倩, 赵雪阳, 尤德强, 曾戎, 于振涛, 李卫, 王小健. 3D打印纯钛骨支架表面掺银介孔生物活性玻璃涂层的性能研究[J]. 材料工程, 2022, 50(11): 34-45.
[4] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[5] 辜宁霞, 荆婉如, 宁磊, 吕芳洁, 宋立新, 熊杰. 钙钛矿太阳能电池用Ag/ZrO2/C柔性纳米纤维膜电极[J]. 材料工程, 2021, 49(9): 79-86.
[6] 李金磊, 邓凌峰, 张淑娴, 谭洁慧, 覃榕荣, 王壮. 化学镀制备纳米银-石墨烯复合材料及其电化学性能[J]. 材料工程, 2021, 49(8): 127-138.
[7] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[8] 郑俊生, 秦楠, 郭鑫, 金黎明, ZhengJim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[9] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[10] 杜春燕, 赵晖, 赵海涛. 纯钛表面载银微弧氧化陶瓷膜的制备及性能[J]. 材料工程, 2020, 48(8): 157-162.
[11] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[12] 王子明, 王东星, 陆姗姗, 王鑫, 董星龙. 镍基Ni-Ag复合纳米粒子直流电弧等离子体法制备及其烧结电学性能[J]. 材料工程, 2020, 48(3): 92-97.
[13] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[14] 毕明刚, 张纪梅, 郝帅帅, 谢博尧. 硫醇保护的银簇制备及其荧光检测应用的进展[J]. 材料工程, 2020, 48(2): 11-21.
[15] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn