采用ProCAST软件系统研究了LMC(Liquid Metal Cooling)以及HRS(High Rate Solidification)工艺下,不同工艺参数对单晶铸件凝固过程中纵向温度梯度、温度梯度角、凝固界面位置的影响。结果表明:HRS工艺受型壳厚度影响很小,型壳表面的辐射散热是HRS工艺的主要影响因素,型壳的导热或者型壳和合金之间的换热是LMC工艺的主要影响因素;提高保温炉温度有利于提高纵向温度梯度;拉速是影响定向凝固最重要的参数,随拉速的增加,单晶铸件的纵向温度梯度先增大后减小,因此,制备不同合金铸件时应当采用不同的拉速;不同浇注温度时,经过10min的静置时间后,单晶铸件的初始温度分布趋于一致,对后续凝固过程影响很小。提出了以纵向温度梯度G//、温度梯度角θ以及凝固界面位置Rp考察定向凝固工艺参数优劣的标准,纵向温度梯度、温度梯度角、凝固界面位置是评价定向凝固参数优劣的有效手段。
利用金相显微镜(OM)、X射线衍射(XRD)、扫描电镜(SEM)和高温拉伸对时效态ZM61-xSn(x=0,6,8,10,质量分数/%,下同)合金的高温拉伸性能及断裂机制进行了研究。结果表明:ZM61-xSn(x=6,8,10)合金的物相由α-Mg,α-Mn,MgZn2,Mg2Sn相组成。添加Sn元素可有效细化ZM61合金组织,提高合金高温强度,但降低合金塑性。ZM61-xSn(x=6,8,10)合金在300℃下拉伸的抗拉强度分别为149,140,145MPa,较相同温度下拉伸的ZM61合金的抗拉强度分别提高了26%,17%,23%。ZM61-xSn(x=0,6,8,10)合金在300℃下拉伸的伸长率分别为39.95%,5.65%,7.01%和6.33%。拉伸温度对ZM61-xSn(x=6,8,10)合金的断裂机制产生显著影响。当拉伸温度低于220℃,合金为穿晶断裂;高于220℃时,合金变为沿晶断裂。
为提高民用客机涡轮叶片修复效率,对叶片修复工艺链中电解修型非加工面保护工艺进行了研究。通过建立电场的数学模型,对叶片表面电流密度分布进行数值计算,研究修型规律,并以此分析传统电解修型工艺的缺陷形成机理。提出了牺牲层工艺保护非加工面,并建立实验系统,对堆焊修复后的TC4叶片进行电解修型。结果表明:直接修型、绝缘层保护两种传统工艺将分别形成杂散腐蚀和“台阶”缺陷;采用牺牲层工艺,单组叶片修型时间60s,修型后的叶片精度较高,表面粗糙度Ra≤0.6μm,具有较好重复性,满足设计要求。
制备了富含大量共晶组织、过饱和固溶体以及富含粗大析出相3种典型组织特征的2E12合金。结合热模拟实验和显微组织观察,针对3种合金铸锭在变形温度为340~490℃、应变速率为0.001~10s-1下的变形行为开展研究。结果表明:组织特征对合金的热变形行为有显著影响。在3种合金中,富含粗大析出相合金的峰值应力较高而富含大量共晶组织合金的峰值应力较低。3种合金的流变应力均可用双曲正弦本构关系来描述。3种合金的变形激活能分别为178.6,222.1,154.9kJ/mol。利用加工图确定热变形的流变失稳区,富含粗大析出相合金具有较大的可加工范围而富含大量共晶组织合金的可加工范围最小。
以KH560在碱性条件下水解缩合制备的环氧基倍半硅氧烷(EPb-POSS)为改性剂,对双酚A型环氧树脂(E-51)/4,4'-二氨基二苯砜(DDS)进行改性,制备EPb-POSS/E-51/DDS改性树脂体系,研究该树脂体系的固化工艺和不同含量的EPb-POSS对改性树脂体系力学性能和热稳定性的影响。结果表明,EPb-POSS对改性树脂的固化工艺及其刚性影响不大,但是能显著提高其韧性。POSS含量为1.0%(质量分数)时,改性树脂的冲击强度达到49.2kJ·m2,提高了90.0%,并表现为明显的韧性断裂;弯曲强度132.8MPa,略有提高;初始分解温度378.0℃,提高了26.0℃。
采用微小力学测试系统对经过高温老化的中温自反应精密钎焊铝蜂窝芯接头进行拉剪性能测试,并利用扫描电子显微镜及能谱仪对其进行显微组织形貌观察和成分分析,研究接头组织及成分变化与其耐高温老化性能的关系。结果表明:利用1060铝箔和铝合金复合钎焊板所制备的铝蜂窝芯在200℃高温老化12,24,36h后拉剪强度与未老化时相比均无明显下降,且接头的薄弱部分为靠近钎焊接头的母材部分。铝蜂窝芯接头组织形貌及成分分析显示,高温老化对钎缝组织中金属Zn,Sn含量影响不大且无新的化合物相形成;钎缝组织及成分不发生明显变化是蜂窝芯接头耐高温老化的主要原因。
利用冷喷涂技术制备CoNiCrAlY涂层,并对涂层进行了真空预氧化处理。结合X射线衍射,扫描电镜,能谱分析等方法研究预氧化处理前后的CoNiCrAlY涂层在900℃的Na2SO4熔盐中的热腐蚀行为。结果表明:冷喷涂CoNiCrAlY涂层含氧量为0.12%(质量分数),孔隙率小于0.28%(体积分数)。真空预氧化处理在涂层表面生成厚约0.26μm连续、致密的α-Al2O3氧化膜;喷涂态涂层和预氧化涂层在热腐蚀150h后表面均生成了以α-Al2O3为主的致密连续氧化膜,保护了基体免受腐蚀破坏;真空预氧化处理有效减缓了S和O等元素向涂层内扩散的速率,从而提高了涂层的抗Na2SO4熔盐热腐蚀性能;高温热腐蚀对涂层的破坏作用远大于高温氧化。在相同温度下,涂层在单一Na2SO4熔盐中腐蚀时,Al的消耗速率约为高温氧化时的2倍。
以石蜡作为相变物质、二氧化钛(TiO2)作为基体材料,添加少量活性炭提高其热导率,通过微乳液法制备出新型石蜡/TiO2/活性炭复合相变材料。利用XRD,SEM,TGA,DSC对材料的组成、形貌和性质分别进行表征,并对材料相变过程中的形状稳定性进行测试。结果表明:石蜡被TiO2有效封装,保证了材料的定形相变特征;此外该复合材料还表现出超疏水性质。这些多功能特性将使其作为多功能涂料或其他添加剂在节能建筑中具有重要的应用价值。
为了提高碳基超级电容器电极的电化学性能,采用同轴静电纺丝和原位还原技术相结合的方法制备聚丙烯腈基(PAN-based)负载银纳米碳纤维,经过热处理后得到负载银的中空纳米碳纤维,考察了所制得负载银中空纳米碳纤维的形貌、结构及电化学性能。结果表明:原位还原技术能顺利将银颗粒成功负载到中空纳米碳纤维表面,且负载银有利于提高中空纳米碳纤维的电化学性能,表现为电化学反应可逆性和电容量均有所增加,电荷转移阻抗减小。
采用熔融共混和模压成型工艺制备超细硫酸钡(BaSO4)和轻质碳酸钙(CaCO3)协同增韧聚乳酸(PLA)混杂材料。在保持CaCO3质量分数恒定的情况下,着重考察了BaSO4的含量对混杂体系的微观结构、力学性能、熔体流动速率和热稳定性的影响。结果表明:适量BaSO4的引入在基体中分散均匀且界面结合良好,显著提高了材料的韧性。当BaSO4的质量分数为15%时,PLA混杂材料的冲击韧度和断裂伸长率较PLA/CaCO3体系分别提高了60.38%和151.90%。随着BaSO4含量的增加,拉伸强度逐渐下降,而弹性模量却持续上升。总体上,BaSO4的引入降低了PLA混杂材料的熔体流动速率,但对PLA的热分解行为影响甚微。
通过多道次等通道转角挤压(ECAP)和退火热处理,制备不同组织结构状态的超细晶工业纯铁,采用透射电镜观察微观组织结构特征,并用电化学极化和阻抗谱技术表征超细晶纯铁在含氯离子的钝化介质中点蚀行为。结果表明:随着ECAP加工道次增加,低道次形成的高位错密度板条状结构转变为低位错密度等轴晶;ECAP样退火热处理后,位错减少、大角度晶界增加。ECAP加工道次对纯铁自钝化性能影响不大,开路电位和极化电阻变化均较小;耐点蚀性能与加工道次有关,点蚀电位随加工道次先下降后升高;退火处理后自钝化性能和耐蚀性提高,开路电位、极化电阻和点蚀电位均明显增大。
采用溶胶-凝胶自燃烧法在低温下一步合成了纯相尖晶石结构的锰锌铁氧体(Mn0.5Zn0.5Fe2O4)纳米颗粒。其结构、形貌和热分解过程分别采用X射线衍射仪(XRD)、扫描电镜(SEM)和TG-DSC分析仪进行了表征。结果表明:在pH=7.0、柠檬酸与金属离子摩尔比为1:1和柠檬酸的浓度为0.7mol/L的条件下,金属的硝酸盐和柠檬酸形成的干凝胶可通过自燃烧过程一步合成出平均粒径约为60nm的纯相Mn0.5Zn0.5Fe2O4铁氧体纳米颗粒。经过400℃煅烧后,颗粒粒径增大,衍射峰变窄,强度增加,晶型更趋于完整。
研究了室温下针刺C/SiC复合材料的拉-压疲劳特性,并与其拉-拉疲劳特性进行了对比。结果表明:针刺C/SiC复合材料的拉-压疲劳强度略低于拉-拉疲劳强度;两种循环载荷下都存在迟滞现象,随着循环数的增大迟滞环不断右移,且偏斜程度和包围面积不断增大。采用扫描电子显微镜对失效试件的断口形貌和微观结构的观察表明:除了垂直于加载方向的基体开裂以及界面脱粘,拉-压循环加载下的细观失效机制还包括平行于加载方向的基体开裂以及层间的开裂。这些平行于加载方向的损伤使得纤维受力状态恶化,最终削弱了针刺C/SiC复合材料拉-压疲劳强度。
研究了在恒温水浸吸湿实验中,水浸温度对复合材料吸湿参数的影响。通过对国产碳纤维/双马复合材料在60,70,80℃恒温水浸中进行的吸湿实验,得到了不同水浸温度下的吸湿曲线。由吸湿曲线分别求出了各水浸温度下的扩散系数和平衡吸湿率以及它们与水浸温度的关系。结合Arrhenius关系和Fick定律,得到了反映此复合材料在任意水浸温度下吸湿行为的吸湿模型。该吸湿模型能较为准确地预测此复合材料在95℃恒温水浸中任意时刻的吸湿量及预估达到特定吸湿量所需要的时间。
基于对影响非线超声性检测因素的探讨,考察了应用非线性检测无损评价HR3C烟侧腐蚀的可行性。结果表明:脉冲激励串个数n≤2df/c,加汉宁窗有助于降低系统干扰,此外,样品表面粗糙度对非线性系数β产生显著的影响。随腐蚀时间的延长,非线性系数呈现阶段性的递增趋势。腐蚀初期(腐蚀时间在50h以内),非线性系数增幅不足20%;然而,腐蚀至150h,非线性系数显著增加;相对于未腐蚀样品,腐蚀200h时的非线性系数增幅达260%。非线性系数的单调变化与腐蚀损伤的加剧相一致,因此,应用超声非线性无损评价HR3C的烟侧腐蚀是可行的。
通过混合煅烧法制备出g-C3N4/NiO复合材料,采用X射线衍射(XRD)、红外光谱(FT-IR)、场发射扫描电子显微镜(FESEM)、X射线能谱(EDS)对其结构和形貌进行表征,利用差热分析(DTA)和热失重(TG)研究其对高氯酸铵(AP)热分解的影响。结果表明:纳米NiO均匀分散于g-C3N4的表面,g-C3N4/NiO使AP的高温和低温分解峰合并,高温分解温度降低62.5℃,表现出良好的催化作用。g-C3N4/NiO的复合催化效果优于单独使用g-C3N4或NiO,说明g-C3N4和NiO具有协同催化作用。
采用机械球磨法制备了K2Ti6O13晶须单独掺杂、以及K2Ti6O13晶须与Ni粉复合掺杂的MgH2储氢复合体系,并通过XRD,SEM,DSC等检测手段对其微观结构与解氢性能进行表征。结果表明:当K2Ti6O13晶须单独掺杂于MgH2时,K2Ti6O13晶须起到助磨细化MgH2晶粒的作用,同时还抑制了MgH2颗粒的团聚,有效降低了MgH2基体的解氢温度,且当K2Ti6O13与MgH2质量配比为3:7时,MgH2解氢性能的改善效果尤为明显,其解氢温度较纯MgH2球磨体系降低了近75℃;此外,当K2Ti6O13晶须和Ni粉末复合掺杂于MgH2时,得益于K2Ti6O13晶须的助磨细化MgH2晶粒以及Ni固溶于MgH2晶格致使其结构稳定性降低的双重作用,从而使得MgH2基体的解氢温度较K2Ti6O13晶须单独掺杂时进一步降低,相对于纯MgH2球磨体系降低了近87℃。
横向断裂是制约复合材料结构设计的关键点,传统细观模型因为不能充分考虑组分性能、体积分数和纤维形状及分布情况而不能有效预测材料横向力学性能。采用改进的随机序列吸收算法建立具有随机纤维分布的复合材料代表性体积单胞模型,考虑基体破坏和界面脱粘两种失效模式和固化过程中产生的残余应力,对模型在横向拉、压、剪3种载荷下的力学行为进行仿真计算。分析了不同界面强度对复合材料力学性能的影响规律。仿真结果与实验数据对比表明:横向模量预测误差在7%以内,压缩和剪切的强度误差在8%以内,结果一致性较好,表明该模型能够有效预测复合材料横向力学性能。
采用双十二烷基二甲基溴化铵(DDAB)插层改性氧化石墨烯(DD-GO),再用抗坏血酸进行还原制得功能石墨烯(DD-RGO)。采用溶液成形的方法在涂膜机上制备功能石墨烯(DD-RGO)/热塑性聚氨酯(TPU)复合材料膜,并利用FTIR、XRD、FE-SEM、高阻计、氧气透过仪对DD-RGO/TUP复合材料膜结构和性能进行表征。结果表明:经DDAB改性后的石墨烯能在TPU基体中能以褶皱层状的形式均匀的分散,并提高TPU的热稳定性、阻隔性与抗静电性。当DD-RGO的添加量为2%时,复合材料膜的阻隔性与导电性相对于纯TPU分别提高了50%与7个数量级,阻隔性与抗静电性明显提高。
超材料的电磁响应不仅由其构成材料决定,更与其谐振单元的微结构和排列组合息息相关,基于电磁超材料的完美吸波器(Perfect Metamaterial Absorber,PMA)通过设计合理的谐振器微结构可实现对特定频段电磁波的100%吸收。PMA具备设计灵活、响应可调、吸波强、频带宽、厚度薄、质量轻等诸多优点,可广泛用于隐身材料、频率选择表面、太赫兹成像、微型天线、智能通信、电磁波探测及调控等领域。本文在结合国内外研究现状的基础上综述了基于PMA发展历程、结构特征、制备工艺、性能测试等,以期获得对PMA更为深刻和全面的理解。最后对PMA的发展趋势、应用前景和亟待解决的问题做了探讨,具备多功能的主动智能PMA和基于新工艺、新材料的新型PMA将是未来的发展趋势。