Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (3): 80-87    DOI: 10.11868/j.issn.1001-4381.2015.000926
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Y2O3含量对38CrMoAl钢表面激光合金化WC/Ni金属陶瓷组织与性能的影响
韩立影1,2, 王存山1, 冯巧1
1. 大连理工大学 三束材料改性教育部重点实验室, 辽宁 大连 116024;
2. 辽宁科技大学 材料与冶金学院, 辽宁 鞍山 114051
Influence of Y2O3 Content on Microstructure and Properties of Laser Alloying WC/Ni Metal Ceramic on 38CrMoAl Steel
HAN Li-ying1,2, WANG Cun-shan1, FENG Qiao1
1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China;
2. School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
全文: PDF(25615 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用激光合金化技术,在38CrMoAl钢表面制备不同Y2O3含量的WC/Ni合金化层。利用X射线衍射仪(XRD)、扫描电镜(SEM)、电子探针(EPMA)、显微硬度计和摩擦磨损试验机,系统研究合金化层的相组成、显微组织、显微硬度及摩擦磨损性能随Y2O3含量的变化规律。结果表明:不同Y2O3含量的合金化层皆是由γ-(Fe,Ni)、基体马氏体、M3C及WC相组成,其中纳米WC颗粒主要分布在合金化层上部的枝晶间,而微米WC颗粒则分布于合金化层底部边缘区,且在颗粒边缘形成有明显的外延生长层。随着Y2O3含量的增加,具有亚共晶形貌特征的凝固组织逐渐细化,γ-(Fe,Ni)和M3C数量增多,基体马氏体数量略有减少。但当Y2O3含量(质量分数,下同)超过1.0%时,凝固组织开始有所粗化。随Y2O3含量增加,合金化层硬度呈先增后降、摩擦因数和磨损失重呈先减后增的变化趋势。当Y2O3含量为1.0%时,合金化层硬度(781HV0.2)最高,为基体的2.4倍;摩擦因数和磨损失重最小,分别为基体的17%和8.9%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩立影
王存山
冯巧
关键词 激光合金化WC/NiY2O3显微组织性能    
Abstract:WC/Ni reinforced layers with different Y2O3 contents were fabricated on the surface of 38CrMoAl steel by laser alloying. The influence of Y2O3 content on the phase composition, microstructure, microhardness and tribological performance of the alloying layers were investigated via X-ray diffraction, scanning electron microscopy, electron microprobe, Vickers hardness tester and friction wear testing machine. The results show that the alloying layers with different Y2O3 contents all consist of γ-(Fe, Ni), martensite matrix, M3C, and WC phases. Nano-WC particles are mainly distributed between the dendrites in the top of the alloying layers, while the micro-scale WC particles with epitaxial growth layers are observed in the bottom of alloying layers. With the increase of Y2O3 content, the solidified microstructure with hypoeutectic morphology gradually refines, the number of the γ-(Fe, Ni) and M3C increases, and the number of martensite matrix decreases slightly. When Y2O3 content(mass fraction, the same below) is more than 1.0%, the solidified microstructure slightly coarsens. With the increase of Y2O3 content, the hardness of the alloying layers increases first and then decreases; the friction coefficient and the wear mass loss exhibit the opposite trend. When the Y2O3 content is 1.0%, the hardness of the alloying layer is the highest, which is 2.4 times of hardness of matrix; the friction coefficient and the wear mass loss are the lowest, which are 17% and 8.9% of the matrix respectively.
Key wordslaser alloying    WC/Ni    Y2O3    microstructure    property
收稿日期: 2015-06-30      出版日期: 2017-03-22
中图分类号:  TG162.21  
通讯作者: 王存山(1963-),男,副教授,博士,从事激光表面改性方面的研究,联系地址:辽宁省大连市甘井子区凌工路2号大连理工大学铸造中心410室(116024),E-mail:laser@dlut.edu.cn     E-mail: laser@dlut.edu.cn
引用本文:   
韩立影, 王存山, 冯巧. Y2O3含量对38CrMoAl钢表面激光合金化WC/Ni金属陶瓷组织与性能的影响[J]. 材料工程, 2017, 45(3): 80-87.
HAN Li-ying, WANG Cun-shan, FENG Qiao. Influence of Y2O3 Content on Microstructure and Properties of Laser Alloying WC/Ni Metal Ceramic on 38CrMoAl Steel. Journal of Materials Engineering, 2017, 45(3): 80-87.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000926      或      http://jme.biam.ac.cn/CN/Y2017/V45/I3/80
[1] WENDT U, SETTEGAST S, GRODRIAN IU. Laser alloying of aluminum with titanium wire[J]. Journal of Materials Science Letters, 2003, 22:1319-1322.
[2] WU Y, WANG A H, ZHANG Z, et al. Laser alloying of Ti-Si compound coating on Ti-6Al-4V alloy for the improvement of bioactivity[J]. Applied Surface Science, 2014, 305:16-23.
[3] 吴岸琪,刘其斌,孙桂祥,等. Y2O3含量对40Cr钢激光表面合金化组织与性能的影响[J]. 材料热处理学报,2011,32(9):141-145. WU A Q, LIU Q B, SUN G X, et al. Effect of Y2O3 on microstructure and property of laser surface alloying on 40Cr steel[J]. Transaction of Materials and Heat Treatment, 2011, 32(9):141-145.
[4] 李贵江,许长庆,孟丹,等. 材料表面激光合金化研究进展[J]. 铸造技术,2008,29(8):1136-1139. LI G J, XU C Q, MENG D, et al. Research progress on laser surface alloying[J]. Foundry Technology, 2008, 29(8):1136-1139.
[5] STAIA M H, CRUZ M, DAHOTRE N B, et al. Microstructural and tribological characterization of an A-356 aluminum alloy superficially modified by laser alloying[J]. Thin Solid Films, 2000, 377-378:665-674.
[6] 王洪金,于赟,李小平,等. 激光合金化制备WC颗粒增强复合层耐磨性研究[J]. 应用激光,2012,32(5):370-373. WANG H J, YU Y, LI X P, et al. The study of wear resistance of WC carbide-reinforced composite coating prepared by laser surface alloying[J]. Applied Laser, 2012, 32(5):370-373.
[7] GALUN R, WEISHEIT A, MORDIKE B L. Laser surface alloying of magnesium base alloys[J]. Journal of Laser Applications, 1996, 8(6):299-305.
[8] 孙桂芳,刘常升,陶兴启,等. 高镍铬无限冷硬铸铁轧辊表面激光合金化的研究[J]. 东北大学学报(自然科学版),2008,29(6):845-848. SUN G F, LIU C S, TAO X Q, et al. Research on laser alloying of high-Ni-Cr infinite chilled cast iron roller[J]. Journal of Northeastern University(Natural Science), 2008, 29(6):845-848.
[9] 卢云,何宜柱. 铁基材料激光表面合金化研究进展[J]. 安徽工业大学学报,2002,19(3):181-185. LU Y, HE Y Z. Research development of laser surface alloying on ferrous substrate[J]. Journal of Anhui University of Technology, 2002, 19(3):181-185.
[10] SUN G F, ZHOU R, LI P, et al. Laser surface alloying of C-B-W-Cr powders on nodular cast iron rolls[J]. Surface & Coatings Technology, 2011, 205(8-9):2747-2754.
[11] YAN H, WANG A H, XIONG Z T, et al. Microstructure and wear resistance of composite layers on a ductile iron with multicarbide by laser surface alloying[J]. Applied Surface Science, 2010, 256(23):7001-7009.
[12] 陈建敏,王凌倩,周健松,等. 激光熔覆Ni基涂层研究进展[J]. 中国表面工程,2011,24(2):13-21. CHEN J M, WANG L Q, ZHOU J S, et al. Research progress of laser clad Ni-based coatings[J]. China Surface Engineering, 2011, 24(2):13-21.
[13] LI J N, YU H J, GONG S L, et al. Influence of Al2O3-Y2O3and Ce-Al-Ni amorphous alloy on physical properties of laser synthetic composite coatings on titanium alloys[J]. Surface & Coatings Technology, 2014, 247(5):55-60.
[14] LI J N, GONG S L. Microstructural and performance analysis of a ceramic and amorphous reinforced laser clad composite coating[J]. Lasers in Engineering, 2014, 27(5-6):303-310.
[15] LI J N, YU J H, CHEN C Z, et al. Effect of nano-Y2O3 on microstructure and diffusive behavior of Ti3Al/Al3Ti matrix composite coatings[J]. Kovove Materialy-metallic Materials, 2012, 50(3):169-175.
[16] 谭友宏,刘敏,马文有. Y2O3对WC-B4C激光合金化层裂纹与耐磨性能的影响[J]. 材料保护,2013,46(12):13-16. TAN Y H, LIU M, MA W Y. Microstructure and wear resistance of Y2O3-WC-B4C laser alloying layer on 60CrMnMo Steel[J]. Materials Protection, 2013, 46(12):13-16.
[17] WENG F, CHEN C Z, YU H J. Research status of laser cladding on titanium and its alloys:a review[J]. Materials & Design, 2014, 58(6):412-425.
[18] WANG H Y, CHEN L, LIU B, et al. Heterogeneous nucleation of Mg2Si on Sr11Sb10nucleus in Mg-x(3.5, 5 wt.%)Si-1Al alloys[J]. Materials Chemistry & Physics, 2012, 135(2-3):358-364.
[19] 全永昕,施高义. 摩擦磨损原理[M]. 杭州:浙江大学出版社,1988:211-213.
[20] 王从曾. 材料性能学[M]. 北京:北京工业大学出版社,2001:120.
[1] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[2] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[3] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[4] 孙昊, 贾凯波, 赵凤光, 张羊换, 任慧平. Mg22Y2Ni10Cu2储氢合金的放氢性能[J]. 材料工程, 2020, 48(9): 100-106.
[5] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[6] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[7] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[8] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[9] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[10] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[11] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[12] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[13] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[14] 杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光. 一种第三代单晶高温合金中高温横向持久性能[J]. 材料工程, 2020, 48(7): 139-145.
[15] 尹艳丽, 于鹤龙, 周新远, 宋占永, 王红美, 王文宇, 刘晓亭, 徐滨士. 基于正交实验方法的蛇纹石润滑油添加剂摩擦学性能[J]. 材料工程, 2020, 48(7): 146-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn