Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (4): 108-112    DOI: 10.11868/j.issn.1001-4381.2015.001195
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
单向拉伸条件下补片参数对复合材料胶接修复结构的影响
王跃, 穆志韬, 李旭东, 郝建滨
海军航空工程学院(青岛校区), 山东 青岛 266041
Influence of Patch Parameters on Adhesively Bonded Composite Repair Under Uniaxial Tensile Loading
WANG Yue, MU Zhi-tao, LI Xu-dong, HAO Jian-bin
Qingdao Branch of Naval Aeronautical Academy, Qingdao 266041, Shandong, China
全文: PDF(1676 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 建立含中心半穿透圆孔的损伤金属板修补结构的三维有限元模型,以应力集中系数(Stress Concentration Factor, SCF)和挠度w作为复合材料胶接修复效果的指标,分析单向拉伸条件下,正方形补片的长度、厚度和铺层方式对修复效果的影响。结果表明:补片长度取孔直径的3.5倍、厚度取孔深度的0.6~0.8倍、铺层方式取0°/90°铺层时,复合材料单面修复含损伤裂纹板的效果较好。根据分析结果制备了实验件,进行了单向静拉伸实验,修补实验件的破坏强度比未修补实验件提高了10.1%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王跃
穆志韬
李旭东
郝建滨
关键词 复合材料胶接修补单向拉伸补片参数应力集中系数挠度    
Abstract:A three-dimensional finite element model of the repaired structure was established, by which the impact of patch parameters on effect of one-side boned repaired structure under uniaxial tensile loading was analyzed based on the stress concentration factor (SCF) and deflection. The results show that the repair effect is better when the crack length is 3.5 times of the hole diameter, the thickness is 60% to 80% of the hole depth and the lay-up is 0°/90°. Then the finite element results were subjected to the uniaxial tension tests. The failure strength of the repaired plate increases by 10.1% compared with that of the unrepaired plate.
Key wordscomposite materials    adhesively bonding repair    uniaxial tensile loading    patch parameter    stress concentration factor (SCF)    deflection
收稿日期: 2015-09-28      出版日期: 2017-04-17
中图分类号:  TB331  
通讯作者: 王跃(1989-),男,工程师,博士,研究方向为飞机结构腐蚀疲劳及可靠性研究,联系地址:山东省青岛市李沧区四流中路2号研究生队(266041),E-mail:807697221@qq.com     E-mail: 807697221@qq.com
引用本文:   
王跃, 穆志韬, 李旭东, 郝建滨. 单向拉伸条件下补片参数对复合材料胶接修复结构的影响[J]. 材料工程, 2017, 45(4): 108-112.
WANG Yue, MU Zhi-tao, LI Xu-dong, HAO Jian-bin. Influence of Patch Parameters on Adhesively Bonded Composite Repair Under Uniaxial Tensile Loading. Journal of Materials Engineering, 2017, 45(4): 108-112.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001195      或      http://jme.biam.ac.cn/CN/Y2017/V45/I4/108
[1] 苏维国,穆志韬,郝建滨,等.金属裂纹板复合材料修补结构的超奇异积分方程方法[J].工程力学,2014,31(11):31-38. SU W G,MU Z T,HAO J B,et al. Method of hypersingular integral equation applied to a cracked metallic structure repaired with adhesive bonding composite patch[J]. Engineering Mechanics,2014,31(11):31-38.
[2] 穆志韬,郝建滨,高雪霞,等.含中心裂纹铝合金厚板复合材料补片胶接结构应力强度因子有限元分析[J].玻璃钢/复合材料,2015,(7):50-53. MU Z T,HAO J B, GAO X X,et al. Stress intensity factor analysis of center-cracked metallic plate bonded with composite patches based on the finite element method[J]. FRP/CM,2015,(7):50-53.
[3] BAKER A A. Repair of cracked or defective metallic aircraft components with advanced fiber composites [J]. Composite Structure, 1984, 2(2): 153-234.
[4] BENYAHIA F, ALBEDAH A. Analysis of the adhesive damage for different patch shapes and size in bonded composite repair of aircraft structures [J]. Materials and Design, 2014,54: 18-24.
[5] KASHFUDDOJIA M. Design of optimum patch shape and size for boned repair on damaged carbon fiber reinforced polymer [J]. Materials and Design, 2014,54: 174-183.
[6] MOKHTARI M, MADANI K, BELHOUARI M. Effects of composite adhesion properties on stress in double lap bonded joints[J].Materials and Design,2013,44:633-639.
[7] ROSALES F, FELLOWS N,DURODOLA J. Failure prediction in carbon composites subjected to bearing versus bypass loading[J]. J Compos Mater, 2012, 46(15):1859-1878.
[8] 苗学周, 李成.补片形状和尺寸对复合材料胶接修补的影响 [J]. 机械工程学报, 2014, 50(20): 63-69. MIAO X Z, LI C. Influence of patch shape and size on adhesively bonded composite repair [J]. Journal of Mechanical Engineering, 2014,50(20): 63-69.
[9] 相超,周丽,宋恩鹏,等.拉伸载荷下贴补复合材料层合板的渐进损伤分析[J]. 工程力学,2014,31(10):234-241. XIANG C, ZHOU L, SONG E P, et al.Progressive damage analysis of bonding patch-repaired composite laminates under tension loading[J]. Engineering Mechanics, 2014,31(10):234-241.
[10] 吕胜利, 程起有.损伤复合材料层板胶接修理的优化设计[J]. 机械强度,2007,29(4): 598-600. LV S L, CHENG Q Y.Optimization design of adhesive bonding repair of damaged composite laminates [J]. Journal of Mechanical Strength, 2007,29(4): 598-600.
[11] 杨孚标. 复合材料修补含中心裂纹铝合金板的静态与疲劳特性研究[D]. 长沙:国防科学技术大学, 2006. YANG F B. The static characteristics and fatigue properties of the center-cracked aluminum plates bonded with composite patches [D]. Changsha: National University of Defense Technology, 2006.
[12] 李绍春,熊峻江.复合材料胶接修补件力学性能的实验和数值模拟[J].材料工程,2011,(11):11-16. LI S C, XIONG J J. Experimental investigation and numerical on mechanical properties of notched metallic panels repaired with bonded composite patch [J]. Journal of Materials Engineering, 2011,(11):11-16.
[13] 石亦平, 周玉蓉.ABAQUS 有限元分析实例详解[M]. 北京: 机械工业出版社, 2006:151-169 SHI Y P, ZHOU Y R. ABAQUS Analysis and Examples[M]. Beijing: China Machine Press, 2006:151-169.
[14] 文思维.硼/环氧复合材料补片修复含中心裂纹铝合金厚板研究[D]. 长沙:国防科学技术大学, 2008. WEN S W. Study on center-cracked thick aluminum plate boned with boron fiber/epoxy composite patch [D]. Changsha:National University of Defense Technology, 2008.
[15] 程起有, 姚磊江.补片尺寸对复合材料胶接修理性能的影响[J]. 飞机设计, 2004,(3): 31-33. CHENG Q Y, YAO L J. Influence of sizes patch on adhesively bonded composite structure strength [J]. Journal of Aircraft Design, 2004,(3): 31-33.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[6] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[11] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[12] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[13] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[14] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[15] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn