Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (4): 128-136    DOI: 10.11868/j.issn.1001-4381.2016.000315
  综述 本期目录 | 过刊浏览 | 高级检索 |
碳纳米管增强铜基复合材料的研究进展
陶静梅, 洪鹏, 陈小丰, 易健宏
昆明理工大学 材料科学与工程学院, 昆明 650093
Research Progress on Carbon Nanotubes Reinforced Cu-matrix Composites
TAO Jing-mei, HONG Peng, CHEN Xiao-feng, YI Jian-hong
Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(1813 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 本文针对碳纳米管增强铜基复合材料研究中的关键问题进行了综述。对碳纳米管增强铜基复合材料的制备技术进行了分类,总结了粉末冶金法、电化学法以及其他方法的研究进展,并强调了制备方法和复合材料性能之间的关系。分析了碳纳米管增强铜基复合材料的界面特征,并概述和总结了其力学性能、电学性能、热学性能、摩擦磨损性能等方面的研究进展和存在问题。指出改善复合材料的制备方法,获得分散均匀的碳纳米管且与铜基体结合良好的复合材料是提高其综合性能的关键。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶静梅
洪鹏
陈小丰
易健宏
关键词 碳纳米管铜基复合材料制备界面性能    
Abstract:The critical issues of CNTs/Cu composites were reviewed. The preparation techniques of the composites were classified, and the research progress on powder metallurgic methods, electrochemical methods and other methods was summarized, with an emphasis on the relationship between preparation methods and properties. The interfacial characteristic of the CNTs/Cu composites was analyzed, and the research progress and existing problems of mechanical properties, electrical properties, thermal properties and wear and friction properties of the composites were also summarized. It was pointed out that the key to increase the comprehensive properties of the composites is to obtain the homogeneous distribution of CNTs and good interfacial bonding between CNTs and the Cu matrix by improving the preparation methods.
Key wordsCNTs    copper matrix composite    preparation    interface    property
收稿日期: 2016-03-18      出版日期: 2017-04-17
中图分类号:  TB331  
通讯作者: 易健宏(1965-),男,博士,教授,研究方向:粉末冶金,联系地址:云南省昆明市学府路293号昆明理工大学材料科学与工程学院(650093),E-mail:yijianhong@kmust.edu.cn     E-mail: yijianhong@kmust.edu.cn
引用本文:   
陶静梅, 洪鹏, 陈小丰, 易健宏. 碳纳米管增强铜基复合材料的研究进展[J]. 材料工程, 2017, 45(4): 128-136.
TAO Jing-mei, HONG Peng, CHEN Xiao-feng, YI Jian-hong. Research Progress on Carbon Nanotubes Reinforced Cu-matrix Composites. Journal of Materials Engineering, 2017, 45(4): 128-136.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000315      或      http://jme.biam.ac.cn/CN/Y2017/V45/I4/128
[1] ROTH S, CARROLL D. One-dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes and Graphene[M]. Weinheim: John Wiley & Sons, 2015.
[2] 易健宏, 杨平, 沈韬. 碳纳米管增强金属基复合材料电学性能研究进展[J]. 复合材料学报, 2016, 33(4):689-703. YI J H, YANG P, SHEN T. Research progress of electrical properties for carbon nanotubes reinforced metal matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(4):689-703.
[3] 何天兵, 胡仁伟, 何晓磊,等. 碳纳米管增强金属基复合材料的研究进展[J]. 材料工程, 2015, 43(10):91-101. HE T B, HU R W, HE X L, et al. Progress in research on carbon nanotube reinforced metal matrix composites[J]. Journal of Materials Engineering, 2015, 43(10):91-101.
[4] ZHAO S, ZHENG Z, HUANG Z, et al. Cu matrix composites reinforced with aligned carbon nanotubes: mechanical, electrical and thermal properties[J]. Materials Science & Engineering:A, 2016, 675:82-91.
[5] ZARE H, JAHEDI M, TOROGHINEJAD M R, et al. Compressive, shear, and fracture behavior of CNT reinforced Al matrix composites manufactured by severe plastic deformation[J]. Materials & Design, 2016, 106:112-119.
[6] LI C D, WANG X J, LIU W Q, et al. Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite[J]. Materials Science & Engineering: A, 2014, 597:264-269.
[7] KONDOH K, THRERUJIRAPAPONG T, UMEDA J, et al. High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion[J]. Composites Science & Technology, 2012, 72(11):1291-1297.
[8] De VOLDER M F L, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes: present and future commercial applications[J]. Science, 2013, 339(6119): 535-539.
[9] HABISREUTINGER S N, LEIJTENS T, EPERON G E, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J]. Nano Letters, 2014, 14(10): 5561-5568.
[10] 卢少微, 冯春林, 聂鹏, 等. 碳纳米管用于聚合物基复合材料健康监测的研究进展[J].航空材料学报, 2015, 35(2): 12-20. LU S W, FENG C L, NIE P, et al.Progress on carbon nanotubes in health monitoring of polymer composites[J].Journal of Aeronautical Materials, 2015, 35(2): 12-20.
[11] BIRCH E M, RUDA A T E, CHAI M, et al. Properties that influence the specific surface areas of carbon nanotubes and nanofibers.[J]. Annals of Occupational Hygiene, 2013, 57(9):1148-1166.
[12] DONG S R, TU J P, ZHANG X B. An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes[J]. Materials Science and Engineering: A, 2001, 313(1): 83-87.
[13] TU J P, YANG Y Z, WANG L Y, et al. Tribological properties of carbon-nanotube-reinforced copper composites[J]. Tribology Letters, 2001, 10(4): 225-228.
[14] CHEN W X, TU J P, WANG L Y, et al. Tribological application of carbon nanotubes in a metal-based composite coating and composites[J]. Carbon, 2003, 41(2): 215-222.
[15] CHEN X H, LI W H, CHEN C S, et al. Preparation and properties of Cu matrix composite reinforced by carbon nanotubes[J]. Transactions of Nonferrous Metals Society of China, 2005, 15(2): 314-318.
[16] KIM K T, CHA S I, HONG S H. Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites[J]. Materials Science and Engineering: A, 2007, 449: 46-50.
[17] KIM K T, CHA S I, HONG S H. Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites[J]. Materials Science and Engineering: A, 2006, 430: 27-33.
[18] CHA S I, KIM K T, ARSHAD S N, et al. Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing[J]. Advanced Materials, 2005, 17(11): 1377-1381.
[19] LI Y H, HOUSTEN W, ZHAO Y, et al. Cu/single-walled carbon nanotube laminate composites fabricated by cold rolling and annealing[J]. Nanotechnology, 2007, 18(20): 205607.
[20] DAOUSH W M, LIM B K, MO C B, et al. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process[J]. Materials Science and Engineering: A, 2009, 513: 247-253.
[21] BAKSHI S R, LAHIRI D, AGARWAL A. Carbon nanotube reinforced metal matrix composites-a review[J]. International Materials Reviews, 2010, 55(1): 41-64.
[22] LIM B, KIM C, KIM B, et al. The effects of interfacial bonding on mechanical properties of single-walled carbon nanotube reinforced copper matrix nanocomposites[J]. Nanotechnology, 2006, 17(23): 5759-5764.
[23] KIM K T, LEE K H, CHA S I, et al. Characterization of carbon nanotubes/Cu nanocomposites processed by using nano-sized Cu powders[J]. Mrs Online Proceeding Library, 2011,821: 3.25.1-3.25.6.
[24] JUNG G, NAH C W, SEO M K, et al. Influence of acid and base surface treatment of multi-walled carbon nanotubes on mechanical interfacial properties of carbon fibers-reinforced composites[J]. Polymer Korea, 2012, 36(5):612-616.
[25] DENG C F, WANG D Z, ZHANG X X, et al. Processing and properties of carbon nanotubes reinforced aluminum composites[J]. Materials Science and Engineering: A, 2007, 444(1-2):138-145.
[26] ZHONG R, CONG H, HOU P. Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes[J]. Carbon, 2003, 41(4): 848-851.
[27] HULBERT D M, ANDERS A, ANDERSSON J, et al. A discussion on the absence of plasma in spark plasma sintering[J]. Scripta Materialia, 2009, 60(10): 835-838.
[28] KWON H, ESTILI M, TAKAGI K, et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites[J]. Carbon, 2009, 47(3): 570-577.
[29] QUANG P, JEONG Y G, YOON S C, et al. Consolidation of 1 vol.% carbon nanotube reinforced metal matrix nanocomposites via equal channel angular pressing[J]. Journal of Materials Processing Technology, 2007, 187-188(4): 318-320.
[30] PHAM Q, JEONG Y G, YOON S C, et al. Carbon nanotube reinforced metal matrix nanocomposites via equal channel angular pressing[J]. Materials Science Forum, 2007, 534: 245-248.
[31] DONG S R, ZHANG X B. Mechanical properties of Cu based composites reinforced by carbon nanotubes[J]. Transactions of Nonferrous Metals Society of China, 1999, 9(3): 457-461.
[32] PHAM Q, JEONG Y G, HONG S H, et al. Equal channel angular pressing of carbon nanotube reinforced metal matrix nanocomposites[J]. Key Engineering Materials, 2006, 326-328: 245-248.
[33] YOO S J, HAN S H, KIM W J. A combination of ball milling and high-ratio differential speed rolling for synthesizing carbon nanotube/copper composites[J]. Carbon, 2013, 61(11): 487-500.
[34] YOON E Y, LEE D J, PARK B, et al. Grain refinement and tensile strength of carbon nanotube-reinforced Cu matrix nanocomposites processed by high-pressure torsion[J]. Metals and Materials International, 2013, 19(5): 927-932.
[35] ARAI S, FUJIMORI A, MURAI M, et al. Excellent solid lubrication of electrodeposited nickel-multiwalled carbon nanotube composite films[J]. Materials Letters, 2008, 62(20): 3545-3548.
[36] BORKAR T, HARIMKAR S. Microstructure and wear behaviour of pulse electrodeposited Ni-CNT composite coatings[J]. Surface Engineering, 2013, 27(7):524-530.
[37] ARAI S, ENDO M, KANEKO N. Ni-deposited multi-walled carbon nanotubes by electrodeposition[J]. Carbon, 2004, 42(3): 641-644.
[38] ARAI S, MIYAGAWA K. Frictional and wear properties of cobalt/multiwalled carbon nanotube composite films formed by electrodeposition[J]. Surface and Coatings Technology, 2013, 235: 204-211.
[39] CHEN X H, PENG J C, LI X Q, et al. Tribological behavior of carbon nanotubes-reinforced nickel matrix composite coatings[J]. Journal of Materials Science Letters, 2001, 20(22): 2057-2060.
[40] CHEN X H, CHENG F Q, LI S L, et al. Electrodeposited nickel composites containing carbon nanotubes[J]. Surface and Coatings Technology, 2002, 155(2): 274-278.
[41] CARPENTER C R, SHIPWAY P H, ZHU Y. Electrodeposition of nickel-carbon nanotube nanocomposite coatings for enhanced wear resistance[J]. Wear, 2011, 271(9): 2100-2105.
[42] CHEN X H, CHEN C S, XIAO H N, et al. Corrosion behavior of carbon nanotubes-Ni composite coating[J]. Surface and Coatings Technology, 2005, 191(2-3): 351-356.
[43] SHI Y L, YANG Z, LI M K, et al. Electroplated synthesis of Ni-P-UFD, Ni-P-CNTs, and Ni-P-UFD-CNTs composite coatings as hydrogen evolution electrodes[J]. Materials Chemistry and Physics, 2004, 87(1): 154-161.
[44] XUE R, WU Y. Mechanism and microstructure of electroless Ni-Fe-P plating on CNTs[J]. Journal of China University of Mining and Technology, 2007, 17(3): 424-427.
[45] ALISHAHI M, MONIRVAGHEFI S M, SAATCHI A, et al. The effect of carbon nanotubes on the corrosion and tribological behavior of electroless Ni-P-CNT composite coating[J]. Applied Surface Science, 2012, 258(7):2439-2446.
[46] XU S, HU X, YANG Y, et al. Effect of carbon nanotubes and their dispersion on electroless Ni-P under bump metallization for lead-free solder interconnection[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(6):2682-2691.
[47] DAOUSH W M, LIM B K, MO C B, et al. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process[J]. Materials Science and Engineering: A, 2009, 513-514(11):247-253.
[48] PING C, LI F, JIAN Z, et al. Preparation of Cu/CNT composite particles and catalytic performance on thermal decomposition of ammonium perchlorate[J]. Propellants, Explosives, Pyrotechnics, 2006, 31(6): 452-455.
[49] KIM K T, ECKERT J, LIU G, et al. Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing[J]. Scripta Materialia, 2011, 64(2): 181-184.
[50] KIM K T, CHA S I, GEMMING T, et al. The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites[J]. Small, 2008, 4(11): 1936-1940.
[51] CHEN W X, LEE J Y, LIU Z. The nanocomposites of carbon nanotube with Sb and SnSb 0.5 as Li-ion battery anodes[J]. Carbon, 2003, 41(5): 959-966.
[52] HUANG W, CHEN H, ZUO J M. One-dimensional self-assembly of metallic nanostructures on single-walled carbon-nanotube bundles[J]. Small, 2006, 2(12): 1418-1421.
[53] KANG T J, YOON J W, KIM D I, et al. Sandwich-type laminated nanocomposites developed by selective dip-coating of carbon nanotubes[J].Advanced Materials,2007,19(3):427-432.
[54] HONG S, MYUNG S. Nanotube electronics: a flexible approach to mobility[J]. Nature Nanotechnology, 2007, 2(4): 207-208.
[55] SAITO R, DRESSELHAUS G, DRESSELHAUS M S. Physical Properties of Carbon Nanotubes[M]. London: Imperial College Press, 1998.
[56] YAO Y, DAI X, FENG C, et al. Crinkling ultralong carbon nanotubes into serpentines by a controlled landing process[J]. Advanced Materials, 2009, 21(41): 4158-4162.
[57] SUBRAMANIAM C, YAMADA T, KOBASHI K, et al. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite[J]. Nature Communications, 2013, 4(3):2202-2208.
[58] BIERCUK M J, LLAGUNO M C, RADOSAVLJEVIC M, et al. Carbon nanotube composites for thermal management[J]. Applied Physics Letters, 2002, 80(15): 2767-2769.
[59] DENG C F, MA Y X, ZHANG P, et al. Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes[J]. Materials Letters, 2008, 62(15): 2301-2303.
[60] CHE J, CAGIN T, GODDARD Ⅲ W A. Thermal conductivity of carbon nanotubes[J]. Nanotechnology, 2000, 11(2): 65-69.
[61] BERBER S, KWON Y K, TOMANEK D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20): 4613-4616.
[62] TANG Y, CONG H, ZHONG R, et al. Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum[J]. Carbon, 2004, 42(15): 3260-3262.
[63] CHO S, KIKUCHI K, MIYAZAKI T, et al. Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites[J]. Scripta Materialia, 2010, 63(4): 375-378.
[64] ZHANG H L, LI J F, YAO K F, et al. Spark plasma sintering and thermal conductivity of carbon nanotube bulk materials[J]. Journal of Applied Physics, 2005, 97(11): 114310.
[65] Van TRINH P, TRUNG T B, THANG N B, et al. Calculation of the friction coefficient of Cu matrix composite reinforced by carbon nanotubes[J]. Computational Materials Science, 2010, 49(4): 239-241.
[66] CHEN X, ZHANG G, CHEN C, et al. Carbon nanotube composite deposits with high hardness and high wear resistance[J]. Advanced Engineering Materials, 2003, 5(7): 514-518.
[67] KIM C, LIM B, KIM B, et al. Strengthening of copper matrix composites by nickel-coated single-walled carbon nanotube reinforcements[J]. Synthetic Metals, 2009, 159(5): 424-429.
[68] RYU H J, CHA S I, HONG S H. Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites[J]. Journal of Materials Research, 2003, 18(12): 2851-2858.
[1] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[2] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[3] 徐晨曦, 胡安俊, 舒朝著, 龙剑平. 金属相二硫化钼在能量储存与转化中的应用进展[J]. 材料工程, 2020, 48(9): 34-46.
[4] 邹漫, 陈叶青. 碳点在生物诊疗中的应用[J]. 材料工程, 2020, 48(9): 59-68.
[5] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[6] 孙昊, 贾凯波, 赵凤光, 张羊换, 任慧平. Mg22Y2Ni10Cu2储氢合金的放氢性能[J]. 材料工程, 2020, 48(9): 100-106.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[9] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[10] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[11] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[12] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[13] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[14] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[15] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn