Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (5): 31-37    DOI: 10.11868/j.issn.1001-4381.2015.000411
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
B10铜镍合金海水加速腐蚀行为
刘天娇, 陈惠鹏, 张卫方(), 娄伟涛
北京航空航天大学 可靠性与环境工程技术国防科技重点实验室, 北京 100191
Accelerated Corrosion Behavior of B10 Cu-Ni Alloy in Seawater
Tian-jiao LIU, Hui-peng CHEN, Wei-fang ZHANG(), Wei-tao LOU
National Defense Science & Technology Laboratory on Reliability & Environmental Engineering, Beihang University, Beijing 100191, China
全文: PDF(3922 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)      
摘要 

B10铜镍合金具有优良的耐海水腐蚀性能,为研究其在海水中的腐蚀行为,取厦门天然海水,加入双氧水作为腐蚀加速剂,在室内模拟海水全浸腐蚀实验,采用失重法、电化学阻抗谱(EIS)技术分析B10合金在海水腐蚀中的腐蚀速率随腐蚀时间的变化规律,用不同腐蚀周期的电化学阻抗谱特征来表征工作面积为1cm2的合金表面氧化膜的生长破坏情况。结合扫描电子显微镜(SEM)、能谱分析(EDX)、XPS和拉曼光谱技术分析B10合金表面腐蚀产物膜的成分以及B10合金在海水腐蚀中的腐蚀类型。结果表明,氧化膜的生成与破坏使得合金在海水中的瞬态腐蚀速率呈先减小后增大的趋势,腐蚀产物包含碱式氯化铜Cu2(OH)3Cl和氧化亚铜Cu2O,腐蚀由点蚀开始,逐渐经历了晶间腐蚀-剥蚀。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘天娇
陈惠鹏
张卫方
娄伟涛
关键词 B10铜镍合金海水腐蚀EISSEM腐蚀产物    
Abstract

B10 Cu-Ni alloy has good corrosion resistance against seawater. Natural seawater from Xiamen, was used to study the seawater corrosion behaviour of B10 Cu-Ni alloy, H2O2 was added as corrosion accelerator. The whole seawater immersion corrosion simulation experiments were conducted in laboratory. Geometric measurement and electrochemical impedance spectroscopy (EIS) technique were used to obtain the tendency of corrosion rate versus corrosion time. The growth and damage of the oxidation film on the surface of the alloy of 1cm2 working area were characterized by the impedance spectra features with different corrosion time.Scanning electron microscope(SEM), energy spectrum analysis(EDX), X-ray photoelectron spectroscopy(XPS) and raman spectrum were used to analyse the constitution of corrosion product and the corrosion types. The results show that the instantaneous corrosion rate exhibits decreasing first then increasing due to the state of oxidation film. The corrosion products consist of Cu2(OH)3Cl and Cu2O. And the corrosion of B10 Cu-Ni alloy starts with pitting corrosion, then gradually goes through the evolution process of intergranular corrosion to exfoliation.

Key wordsB10 Cu-Ni alloy    seawater corrosion    EIS    SEM    corrosion product
收稿日期: 2015-04-15      出版日期: 2017-05-17
中图分类号:  V252.2  
  TB31  
基金资助:国家自然科学基金项目(37689501)
通讯作者: 张卫方     E-mail: 08590@buaa.edu.cn
作者简介: 张卫方(1970-), 男, 教授, 博士后, 现从事材料失效分析方向与研究, 联系地址:北京市海淀区学院路37号为民楼(100191), E-mail:08590@buaa.edu.cn
引用本文:   
刘天娇, 陈惠鹏, 张卫方, 娄伟涛. B10铜镍合金海水加速腐蚀行为[J]. 材料工程, 2017, 45(5): 31-37.
Tian-jiao LIU, Hui-peng CHEN, Wei-fang ZHANG, Wei-tao LOU. Accelerated Corrosion Behavior of B10 Cu-Ni Alloy in Seawater. Journal of Materials Engineering, 2017, 45(5): 31-37.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000411      或      http://jme.biam.ac.cn/CN/Y2017/V45/I5/31
Si P Fe S Zn Ni Mn Cu
< 0.15 < 0.02 1.20 0.0013 < 0.3 9.76 0.74 Bal
Table 1  B10铜镍合金化学成分(质量分数/%)
Fig.1  B10试样平均腐蚀速率随时间变化趋势
Fig.2  B10铜镍合金腐蚀初期的表面微观形貌    (a)2h;(b)8h;(c)72h;(d)168h
Time/h Cu Ni O Cl
2 79.93 10.4 9.55 0.12
8 72.56 9.2 18.24 0
72 67.19 8.83 23.98 0
168 59.71 2.47 27.8 10.02
Table 2  B10铜镍合金表面能谱分析结果(质量分数/%)
Fig.3  B10铜镍合金在不同腐蚀周期下腐蚀产物XPS Cu 2p窄谱扫描图
Fig.4  B10铜镍合金腐蚀拉曼光谱    (a)7d;(b)14d;(c)28d
Fig.5  B10试样海水腐蚀不同周期后的表面微观形貌(酸洗后)(a)7d;(b)14d;(c)28d;(d)56d
Fig.6  B10铜镍合金海水腐蚀不同时间的Nyquist图(1) 及其等效电路图(2)    (a)2h~7d;(b)7~28d
1 张智强, 郭泽亮, 雷竹芳. 铜合金在舰船上的应用[J]. 材料开发与应用, 2006, 21 (5): 43- 46.
1 ZHANG Z Q , GUO Z L , LEI Z F . Applications of copper alloy in shipbuilding[J]. Development and Application of Materials, 2006, 21 (5): 43- 46.
2 杜娟, 王洪仁, 杜敏, 等. B10铜镍合金流动海水冲刷腐蚀电化学行为[J]. 腐蚀科学与防护技术, 2008, 20 (1): 12- 18.
2 DU J , WANG H R , DU M , et al. Electrochemical corrosion behavior of B10 Cu-Ni alloy in flowing seawater[J]. Corrosion Science and Protection Technology, 2008, 20 (1): 12- 18.
3 迟长云, 李宁, 薛建军, 等. B30铜镍合金在海水中的电化学行为[J]. 材料保护, 2009, 42 (8): 19- 22.
3 CHI C Y , LI N , XUE J J , et al. Electrochemical behavior of B10 Cu-Ni alloy in seawater[J]. Material Protection, 2009, 42 (8): 19- 22.
4 刘伟华, 曹中秋, 郑志国. Cl-含量对铸态Cu-40Ni合金电化学腐蚀行为的影响[J]. 沈阳师范大学学报, 2004, 22 (3): 220- 223.
4 LIU W H , CAO Z Q , ZHENG Z G . The effect of Cl- content on corrosion electrochemical behavior of CA Cu-40Ni Alloy[J]. Journal of Shenyang Normal University (Natural Science), 2004, 22 (3): 220- 223.
5 SYRETT B C , MACDONALD D D . The validity of electrochemical methods for measuring corrosion rates of copper-nickel alloys in sea water[J]. Corrosion, 1979, 35 (11): 505- 509.
6 MELCHERS R E . Temperature effect on seawater immersion corrosion of 90/10 copper-nickel alloy[J]. Corrosion, 2001, 57 (5): 440- 444.
7 CROUSIER J , BECCARIA A M . Behavior of Cu-Ni alloys in natural sea water and NaCl solution[J]. Materials and Corrosion, 1990, 41 (4): 185- 189.
8 DHAR H P , WHITE R E , BURNELL G. , et al. Corrosion of Cu and Cu-Ni alloys in 0.5 M NaCl and in synthetic seawater[J]. Corrosion, 1985, 41 (6): 317- 323.
9 HODGKIESS T , VASSILIOU G . Complexities in the erosion corrosion of copper-nickel alloys in saline water[J]. Desalination, 2005, 183 (1): 235- 247.
10 DRACH A , TSUKROV I , DECEW J , et al. Field studies of corrosion behavior of copper alloys in natural seawater[J]. Corrosion Science, 2013, 76 (1): 453- 464.
11 BAUTISTA B E T , WIKIEL A J , DATSENKO I , et al. Influence of extracellular polymeric substances (EPS) from Pseudomonas NCIMB 2021 on the corrosion behavior of 70Cu-30Ni alloy in seawater[J]. Journal of Electroanalytical Chemistry, 2015, 737 (1): 184- 197.
12 ROSSANA G , MARK A B , JAMES E C , et al. Corrosion behavior of a 2219 aluminum alloy treated with a chromate conversion coating exposed to a 3.5% NaCl solution[J]. Corros Sci, 2011, 53, 1214- 1223.
13 陈红梅, 赵茂密, 王戎丞, 等. Al-Zr-Nd合金在3.5%NaCl溶液中的腐蚀行为[J]. 腐蚀与防护, 2013, 34 (12): 1072- 1076.
13 CHEN H M , ZHAO M M , WANG R C , et al. Corrosion behavior of Al-Zr-Nd alloys in 3.5% NaCl solution[J]. Corrosion and Protection, 2013, 34 (12): 1072- 1076.
14 LI S H , ZHANG H R , LIU J H . Corrosion behavior of aluminum alloy 2024-T3 by 8-hydroxy-quinoline and its derivative in 3.5% chloride solution[J]. Trans Nonferrous Met Soc China, 2007, 17 (2): 318- 325.
15 祁星, 宋仁国, 祁文娟, 等. pH值对7050铝合金膜致应力和应力腐蚀敏感性的影响[J]. 材料工程, 2016, 44 (5): 86- 92.
15 QI X , SONG R G , QI W J , et al. Influence of pH values on passive film-induced stress and susceptibility to stress corrosion cracking in 7050 aluminum alloy[J]. Journal of Materials Engineering, 2016, 44 (5): 86- 92.
16 陈翔峰. LF6M铝镁合金发生包铝鼓泡的机理研究[C]//水环境腐蚀与防护学术研讨会论文集. 北京: 北京科技大学出版社, 2010.
16 CHEN X F. Study on the blistering mechanism of LF6M Al magnesium alloy [C]//Chinese Institute of Corrosion and Protection, Corrosion and Protection of Water Environment Symposium Set. Beijing: Beijing University of Science and Technology Press, 2010.
17 AN B G, ZHANG X Y, HAN E H. The effect of salt species during the precipitation in the atmosphere on the corrosion of LY12CZ alloy[C]//International Corrosion Council, 15th International Corrosion Congress.Spain: Corrosion Engineering Science & Technology the International Journal of Corrosion Processes & Corrosion Control, 2002.
18 杨超, 张慧霞, 郭为民, 等. 添加双氧水对高强度低合金钢在海水中腐蚀影响研究[J]. 中国腐蚀与防护学报, 2013, 33 (3): 205- 210.
18 YANG C , ZHANG H X , GUO W M , et al. Effects of H2O2 addition on corrosion behavior of high strength low-alloy steel in seawater[J]. Journal of Chinese Society for Corrosion and Protection, 2013, 33 (3): 205- 210.
19 ONES K , HOEPPNER D W . Prior corrosion and fatigue of 2024-T3 aluminum alloy[J]. Corrosion Science, 2006, 48 (10): 3109- 3122.
20 尹承军. B10合金在模拟海水中的冲刷腐蚀研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
20 YIN C J. Erosion-corrosion of 90/10 alloy in artificial seawater [D]. Harbin: Harbin Engineering University, 2012.
21 郭瑞金, 火时中. 小孔腐蚀诱发过程的研究[J]. 中国腐蚀与防护学报, 1986, 6 (2): 113- 122.
21 GUO R J , HUO S Z . An investigation of pitting initiation process[J]. Journal of Chinese Society for Corrosion and Protection, 1986, 6 (2): 113- 122.
22 YIN B , YIN Y , LEI Y , et al. Experimental and density functional studies on the corrosion behavior of the copper-nickel-tin alloy[J]. Chemical Physics Letters, 2011, 509 (4): 192- 197.
23 陈海燕, 朱有兰. B10铜镍合金在NaCl溶液中腐蚀行为的研究[J]. 腐蚀与防护, 2006, 27 (8): 404- 407.
23 CHEN H Y , ZHU Y L . Selective corrosion of BFe10-1-1 alloy in NaCl solution[J]. Corrosion and Protection, 2006, 27 (8): 404- 407.
24 MA A L , JIANG S L , ZHENG Y G , et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: Composition/structure and formation mechanism[J]. Corrosion Science, 2015, 91 (1): 245- 261.
25 MANSFELD F , LIU G , XIAO H , et al. The corrosion behavior of copper alloys, stainless steels and titanium in seawater[J]. Corrosion Science, 1994, 36 (12): 2063- 2095.
26 WAGNER C D . Handbook of X-ray photoelectron spectroscopy: a reference book of standard data for use in X-ray photoelectron spectroscopy[M]. USA: Perkin-elmer Corporation Physical Electronics Division, 1992.
27 林乐耘, 刘少峰. 铜镍合金海水腐蚀的表面与界面特征研究[J]. 腐蚀科学与防护技术, 1999, 11 (1): 37- 43.
27 LIN Y Y , LIU S F . Surface and interface characteristics of Cu-Ni alloy corroded in seawater[J]. Corrosion Science and Protection Technology, 1999, 11 (1): 37- 43.
28 林乐耘, 刘少峰, 朱小龙. 海水腐蚀导致铜镍合金的沿晶析出[J]. 中国腐蚀与防护学报, 1997, 17 (1): 1- 6.
28 LIN Y Y , LIU S F , ZHU X L . Seawater corrosion-induced intergranular precipitation in Cu-Ni alloy[J]. Journal of Chinese Society for Corrosion and Protection, 1997, 17 (1): 1- 6.
29 赵永韬, 李海洪, 陈光章. 铜合金在海水中电化学阻抗谱特征研究[J]. 海洋科学, 2005, 29 (7): 21- 25.
29 ZHAO Y T , LI H H , CHEN G Z . EIS characteristics of Cu-based alloy in seawater[J]. Marine Sciences, 2005, 29 (7): 21- 25.
30 ROBERGE P R , HALLIOP E . Electrochemical impendance spectroscopy as an erosion corrosion rate monitoring technique[J]. Corrosion, 1990, 23 (27): 1- 11.
31 IJSSELING F P . General guidelines for corrosion testing of materials for marine applications: Literature review on sea water as test environment[J]. British Corrosion Journal, 1989, 24 (1): 53- 78.
[1] 张玉波, 郭荣鑫, 夏海廷, 颜峰, 林志伟. WCp含量对粉末冶金Cu/WCp复合材料疲劳裂纹扩展行为的影响[J]. 材料工程, 2017, 45(1): 85-92.
[2] 王婧, 任会兰, 郝莉, 宁建国. 多孔钛材料的动态力学响应研究[J]. 材料工程, 2015, 43(9): 87-93.
[3] 刘栓, 孙虎元, 孙立娟, 范汇吉, 刘增文. 海水中Zn(OH)2对镀锌钢腐蚀行为的影响[J]. 材料工程, 2013, (8): 60-64.
[4] 梁平, 张云霞, 胡传顺. 腐蚀产物膜对X80钢在库尔勒土壤模拟溶液中腐蚀行为的影响[J]. 材料工程, 2012, 0(4): 62-67.
[5] 曹国良, 李国明, 陈珊, 常万顺, 陈学群. Cu对低合金钢耐海水腐蚀的影响[J]. 材料工程, 2011, 0(9): 62-67.
[6] 胥聪敏. X80钢在霍尔果斯水饱和土壤中的短期腐蚀行为研究[J]. 材料工程, 2011, 0(3): 78-81,86.
[7] 聂向晖, 李云龙, 李记科, 张鸿博. Q235碳钢在滨海盐土中的腐蚀形貌、产物及机理分析[J]. 材料工程, 2010, 0(8): 24-28,33.
[8] 胥聪敏. X80管线钢在模拟盐碱土壤介质中的电化学腐蚀行为研究[J]. 材料工程, 2009, 0(9): 66-70.
[9] 朱世东, 白真权, 尹成先, 林冠发, 尹志福. P110钢抗冲刷腐蚀行为研究[J]. 材料工程, 2009, 0(8): 28-32.
[10] 赵国仙, 吕祥鸿, 韩勇. 流速对P110钢腐蚀行为的影响[J]. 材料工程, 2008, 0(8): 5-8.
[11] 张雅妮, 訾进蕾, 朱杰武, 郑茂盛. 微量Cr的添加对铜在含SO2环境中耐蚀性的影响[J]. 材料工程, 2008, 0(2): 49-53.
[12] 于萍, 王蕾蕾, 慕春玲, 崔巍, 张长桥, 邢文国. Zn-Mg合金镀层的表面形貌及在Na2SO4中的腐蚀产物分析[J]. 材料工程, 2007, 0(11): 62-65.
[13] 柴成文, 路民旭, 李兴无, 张国安. 改性咪唑啉缓蚀剂对碳钢CO2腐蚀产物膜形貌和力学性能的影响[J]. 材料工程, 2007, 0(1): 29-33,36.
[14] 颜悦, 王晓丽, 张官理, 胡平, 刘海鹏. 聚碳酸酯透明板材的高温力学行为实验研究[J]. 材料工程, 2005, 0(8): 7-9,14.
[15] 任呈强, 刘道新, 白真权, 李铁虎. N80油管钢腐蚀产物膜的力学性能研究[J]. 材料工程, 2004, 0(8): 17-20,24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn