Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (7): 7-12    DOI: 10.11868/j.issn.1001-4381.2016.000248
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
2A66铝锂合金板材各向异性研究
张显峰1,2, 陆政1,2, 高文理3, 曹亚雷3, 冯朝辉1
1. 北京航空材料研究院, 北京 100095;
2. 北京市先进铝合金材料及应用工程技术研究中心, 北京 100095;
3. 湖南大学 材料科学与工程学院, 长沙 410082
Anisotropy of 2A66 Al-Li Alloy Sheet
ZHANG Xian-feng1,2, LU Zheng1,2, GAO Wen-li3, CAO Ya-lei3, FENG Zhao-hui1
1. Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China;
3. College of Materials Science and Engineering, Hunan University, Changsha 410082, China
全文: PDF(2954 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用布氏硬度与拉伸性能测试以及OM,SEM和TEM分析,研究2A66铝锂合金板材力学性能的各向异性随时效时间变化的规律和合金时效状态下的显微组织,并探讨影响各向异性的主要因素。结果表明:165℃峰值时效前,随时效时间的延长,2A66铝锂合金力学性能的各向异性程度逐渐下降,过时效后合金的各向异性有所增强,伸长率的各向异性大于强度各向异性。峰时效(64h)时合金的σbσ0.2δ的IPA值均达到了最低值,分别为3.0%,3.0%,12.2%,此时合金也获得了较好的强塑性结合,轴向σbσ0.2δ分别为526.5,448.9MPa,10.1%。不同热处理状态下,2A66铝锂合金平面各向异性的总体表现为:纵向(0°)和横向(90°)的强度最高,45°方向最低;45°方向试样的伸长率最高,纵向和横向最低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张显峰
陆政
高文理
曹亚雷
冯朝辉
关键词 2A66铝锂合金力学性能各向异性时效显微组织    
Abstract:The anisotropy and microstructures during aging treatment for 2A66 Al-Li alloy were studied by Brinell hardness, tensile testing, optical microscope(OM), scanning electron microscope(SEM) and transmission electron microscope (TEM). The main factors which influence the anisotropy of mechanical properties were discussed. The results indicate that, before 165℃ peak-aged, the anisotropy of the mechanical properties of the 2A66 Al-Li alloy decreases gradually with the extension of aging time. When the alloy is over-aged, the anisotropy of the alloy increases; the anisotropy of ductility is more serious than that of strength. The IPA values of σb, σ0.2 and δ of the alloy reach the lowest value at 3.0%, 3.0% and 12.2% respectively at the time of peak aging (64h), and the alloy is also obtained with good plasticity and axial tensile properties. σb, σ0.2 and δ of the alloy are 526.5, 448.9MPa, 10.1% respectively. Under different heat treatment conditions, the general behavior of the anisotropy of 2A66 Al-Li alloy is as follows: longitudinal (0°) and transverse (90°) have the highest strength, 45° direction is the lowest strength; 45° direction specimen has the highest elongation, vertical and horizontal direction has the minimum elongation.
Key words2A66 Al-Li alloy    mechanical property    anisotropy    aging treatment    microstructure
收稿日期: 2016-03-07      出版日期: 2017-07-21
中图分类号:  TG146.2  
通讯作者: 张显峰(1979-),男,硕士,高级工程师,从事高强铝合金方面的研究,联系地址:北京市81信箱2分箱(100095),E-mail:zhangxf0476@sohu.com     E-mail: zhangxf0476@sohu.com
引用本文:   
张显峰, 陆政, 高文理, 曹亚雷, 冯朝辉. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017, 45(7): 7-12.
ZHANG Xian-feng, LU Zheng, GAO Wen-li, CAO Ya-lei, FENG Zhao-hui. Anisotropy of 2A66 Al-Li Alloy Sheet. Journal of Materials Engineering, 2017, 45(7): 7-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000248      或      http://jme.biam.ac.cn/CN/Y2017/V45/I7/7
[1] 程晓宇, 王晓梅. 铝锂合金研究与发展[J]. 中国有色金属, 2008, (12): 72-73. CHENG X Y, WANG X M. Research and development of aluminum lithium alloys[J]. China Journal of Nonferrous Metals, 2008, (12): 72-73.
[2] 霍红庆, 郝维新, 耿桂宏, 等. 航天轻型结构材料——铝锂合金的发展[J]. 真空与低温, 2005, 11(2): 63-69. HUO H Q, HAO W X, GENG G H, et al. Development of the new aerocraft material-aluminum-lithium alloy[J]. Vacuum and Cryogenics, 2005, 11(2): 63-69.
[3] 黄兰萍, 郑子樵, 黄永平. 2197铝-锂合金的组织和性能[J]. 中国有色金属学报, 2004, 14(12): 2066-2072. HUANG L P, ZHENG Z Q, HUANG Y P. Microstructure and properties of 2197 Al-Li alloy[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(12): 2066-2072.
[4] AHMADI S, ARABI H, SHOKUHFAR A. Effects of multiple strengthening treatments on mechanical properties and stability of nanoscale precipitated phases in an aluminum-copper-lithium alloy[J]. Journal of Materials Science & Technology, 2010, 26(12): 1078-1082.
[5] 翟彩华,冯朝辉,柴丽华,等. 铝锂合金的发展及一种新型铝锂合金-X2A66[J]. 材料科学与工程学报, 2015, 33(2): 302-306. ZHAI C H, FENG Z H, CHAI L H, et al. Development of Al-Li alloy and a new type of Al-Li alloy X2A66[J]. Journal of Materials Science and Engineering, 2015, 33(2): 302-306.
[6] 刘兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9): 1705-1715. LIU B, PENG C Q, WANG R C, et al. Recent development and prospects for giant plane aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1705-1715.
[7] JATA K V, HOPKINS A K, RIOJA R J. The anisotropy and texture of Al-Li alloys[J]. Materials Science Forum, 1996, 217: 647-652.
[8] 孟亮, 郑修麟. 铝锂合金力学性能的各向异性[J].有色金属, 1996, 48(4): 82-88. MENG L, ZHENG X L. Anisotropy of mechanical properties for aluminum-lithium alloys[J]. Nonferrous Metals,1996, 48(4): 82-88.
[9] 魏齐龙, 陈铮. 1420 铝锂合金的各向异性[J]. 中国有色金属学报, 2002, 12(3): 573-577. WEI Q L, CHEN Z. Anisotropy of 1420 Al-Li alloy[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 573-577.
[10] 魏齐龙, 陈铮, 王永欣. T1相(Al2CuLi)对铝锂合金各向异性的贡献[J]. 有色金属, 2002, 54(3): 4-8. WEI Q L, CHEN Z, WANG Y X. Contribution of T1 precipitate (Al2CuLi) to anisotropy in Al-Li alloys[J]. Nonferrous Metals, 2002, 54(3): 4-8.
[11] 李红英, 欧玲, 郑子樵. 2195 铝锂合金的各向异性研究[J]. 材料工程, 2005, (10): 31-34. LI H Y, OU L, ZHENG Z Q. Research on anisotropy of 2195 Al-Li alloy[J]. Journal of Materials Engineering, 2005, (10): 31-34.
[12] RIOJA R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications[J]. Materials Science and Engineering: A, 1998, 257(1): 100-107.
[13] CHO K K, CHUNG Y H, LEE C W, et al. Effects of grain shape and texture on the yield strength anisotropy of Al-Li alloy sheet[J]. Scripta Materialia, 1999, 40(6): 651-657.
[14] 胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2008.79-80. HU R Z, SHI Q Z.Thermal Analysis Kinetics[M]. Beijing: Science Press, 2008.79-80.
[15] LI H Y, TANG Y, ZENG Z D, et al. Effect of ageing time on strength and microstructures of an Al-Cu-Li-Zn-Mg-Mn-Zr alloy[J]. Materials Science and Engineering: A, 2008, 498(1-2): 314-320.
[16] MAURICE C, DRIVER J H. High temperature plane strain compression of cube oriented aluminium crystals[J]. Acta Metallurgica et Materialia, 1993, 41(6): 1653-1664.
[17] HUANG J C, ARDELL A J. Strengthening mechanisms associated with T1 particles in two Al-Li-Cu alloys[J]. Le Journal De Physique Colloques, 1987,48(C3): 373-383.
[18] 杨进.Al-Mg-Mn-Sc-Zr合金板材平面力学各向异性研究[D].长沙:中南大学,2005. YANG J. Research on plane mechanical anisotropy of Al-Mg-Mn-Sc-Zr alloy sheet[D]. Changsha: Central South University, 2005.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[3] 甄睿, 方信贤, 皮锦红, 许恒源, 吴震. 热处理对Mg97.5Gd1.9Zn0.6合金组织与力学性能的影响[J]. 材料工程, 2020, 48(9): 132-137.
[4] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[5] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[6] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[7] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[8] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[9] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
[10] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[11] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[12] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[13] 王旭青, 彭子超, 罗学军, 马国君, 武丹. 时效制度对挤压+锻造工艺路线FGH95粉末高温合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 120-126.
[14] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[15] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn