Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (7): 19-26    DOI: 10.11868/j.issn.1001-4381.2016.001042
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
包铝层和氧化时间对2E12铝合金硫酸阳极氧化及膜层性能的影响
陈高红1, 胡远森2, 于美2,*(), 刘建华2, 李国爱1
1 北京航空材料研究院, 北京 100095
2 北京航空航天大学 材料科学与工程学院, 北京 100191
Effects of Alclad Layer and Anodizing Time on Sulfuric Acid Anodizing and Film Properties of 2E12 Aluminum Alloy
Gao-hong CHEN1, Yuan-sen HU2, Mei YU2,*(), Jian-hua LIU2, Guo-ai LI1
1 Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(5674 KB)   HTML ( 12 )  
输出: BibTeX | EndNote (RIS)      
摘要 

对保留表面包铝和去除包铝的2E12-T3铝合金采用硫酸阳极氧化处理工艺,研究了包铝层和氧化时间对铝合金阳极氧化行为及膜层耐蚀性的影响。采用扫描电子显微镜观察氧化膜的表面以及截面形貌,应用动电位扫描极化曲线和电化学阻抗谱对膜层的电化学性能进行分析。结果表明:两种铝合金表面均能形成具有防护性能的阳极氧化膜,膜层随氧化时间延长而增厚。富铜的第二相颗粒会使得不带包铝的2E12铝合金氧化膜具有更多孔洞缺陷,甚至出现微裂纹。保留包铝的2E12铝合金表面氧化膜更厚,孔洞缺陷少,耐蚀性更好。阳极氧化30min和45min的2E12铝合金阳极氧化膜具有较低的腐蚀电流和较高的多孔层阻抗,耐蚀性好。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈高红
胡远森
于美
刘建华
李国爱
关键词 2E12铝合金包铝层阳极氧化时间耐蚀性    
Abstract

Alclad and unclad 2E12 aerospace aluminum alloy were treated by sulfuric acid anodic oxidation. The effects of alclad layer and anodizing time on the anodization behaviour and corrosion resistance of anodic oxide layer on 2E12 aluminum alloy were studied. Surface and cross-section morphology of anodic oxide films were observed by scanning electron microscopy. The electrochemical properties of anodic oxide films were analyzed by potentiodynamic polarization curve and electrochemical impedance spectroscopy. The results show that the protective anodic oxide layers are formed on alclad and unclad 2E12 aluminum alloy. The film thickness increases with anodizing time extending. The copper rich second phase particles lead to more cavity defects and even micro cracks on anodic oxide films of unclad 2E12 aluminum alloy. The anodic oxide films on alclad 2E12 aluminum alloy are thicker and have fewer cavity defects, resulting in better corrosion resistance. The films obtained after 30min and 45min anodic oxidation treatment exhibit lower corrosion current and higher impedance of the porous layer than other anodizing time.

Key words2E12 aluminum alloy    alclad layer    anodizing time    corrosion resistance
收稿日期: 2016-09-05      出版日期: 2017-07-21
中图分类号:  TG174.451  
基金资助:国家自然科学基金(21371019)
通讯作者: 于美     E-mail: yumei@buaa.edu.cn
作者简介: 于美(1981-), 女, 副教授, 博士, 主要研究方向为纳米功能材料的制备及性能研究、材料腐蚀与防护研究, 联系地址:北京市海淀区学院路37号北京航空航天大学材料科学与工程学院(100191), E-mail:yumei@buaa.edu.cn
引用本文:   
陈高红, 胡远森, 于美, 刘建华, 李国爱. 包铝层和氧化时间对2E12铝合金硫酸阳极氧化及膜层性能的影响[J]. 材料工程, 2017, 45(7): 19-26.
Gao-hong CHEN, Yuan-sen HU, Mei YU, Jian-hua LIU, Guo-ai LI. Effects of Alclad Layer and Anodizing Time on Sulfuric Acid Anodizing and Film Properties of 2E12 Aluminum Alloy. Journal of Materials Engineering, 2017, 45(7): 19-26.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001042      或      http://jme.biam.ac.cn/CN/Y2017/V45/I7/19
Pretreatment Solution Temperature/℃ Time/s
Degreasing 20g/L Na3PO4 50 80
10g/L Na2CO3
5g/L NaOH
Etching 50g/L NaOH 50 60
Pickling 400g/L HNO3 25 10
Table 1  前处理溶液的化学组成、处理时间和温度
Fig.1  去除包铝(1) 和保留包铝(2) 的2E12铝合金经不同时间阳极氧化后试样的表面SEM图
(a)15min; (b)30min; (c)45min; (d)60min
Fig.2  去除包铝(1) 和保留包铝(2) 的2E12铝合金经不同时间阳极氧化后试样的截面SEM图(a)15min; (b)30min; (c)45min; (d)60min
Fig.3  氧化膜厚度与氧化时间的关系
Fig.4  2E12铝合金阳极氧化电流密度与时间关系曲线
Fig.5  2E12铝合金阳极氧化不同时间的动电位极化曲线
(a)去除包铝的2E12铝合金;(b)保留包铝的2E12铝合金
Sample Anodizing time/min Ecorr /V icorr /(A·cm-2)
Unclad 2E12 aluminum alloy 0 -0.633 9.85×10-6
15 -0.652 7.38×10-7
30 -0.642 5.49×10-7
45 -0.649 5.01×10-7
60 -0.648 1.90×10-6
Alclad 2E12 aluminum alloy 0 -0.793 2.74×10-6
15 -0.807 2.13×10-6
30 -0.773 8.96×10-9
45 -0.774 1.76×10-8
60 -0.793 1.03×10-7
Table 2  2E12铝合金动电位极化曲线性能参数
Fig.6  2E12铝合金在3.5%NaCl溶液中的电化学阻抗Bode图 1-阻抗横值-频率;2-相位角-频率
(a)去除包铝的2E12铝合金;(b)保留包铝的2E12铝合金
Fig.7  2E12铝合金阳极氧化膜在3.5%NaCl溶液中的电化学阻抗等效电路
Aluminum alloy Anodizing time/min Rp /(kΩ·cm2) Cp /(μF·cm-2) np
Unclad 2E12 aluminum alloy15 3.754 0.3287 0.7363
30 4.687 0.1708 0.7644
45 5.020 0.3389 0.7166
60 2.041 0.8012 0.6727
Alclad 2E12 aluminum alloy 15 6.197 0.0201 0.8660
30 10.40 0.1084 0.6713
45 11.33 0.0736 0.7004
60 8.823 0.0229 0.7848
Table 3  阳极氧化不同时间的2E12铝合金氧化膜多孔层电化学阻抗拟合结果
1 CURIONI M , SKELDON P , KOROLEVA E , et al. Role of tartaric acid on the anodizing and corrosion behavior of AA2024 T3 aluminum alloy[J]. Journal of the Electrochemical Society, 2009, 156 (4): C147- C153.
doi: 10.1149/1.3077602
2 MOUTARLIER V , VIENNET R , ROLET J , et al. Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy[J]. Applied Surface Science, 2015, 355, 26- 31.
doi: 10.1016/j.apsusc.2015.07.098
3 CHEN Z , REN J , ZHANG J , et al. Regulation mechanism of novel thermomechanical treatment for microstructure and properties of 2E12 aluminum alloy[J]. Journal of Materials Engineering & Performance, 2015, 44 (10): 2341- 2346.
4 YIN D , LIU H , CHEN Y , et al. Effect of grain size on fatigue-crack growth in 2524 aluminium alloy[J]. International Journal of Fatigue, 2016, 84, 9- 16.
doi: 10.1016/j.ijfatigue.2015.11.011
5 CAPELOSSI V R , POELMAN M , RECLOUX I , et al. Corrosion protection of clad 2024 aluminum alloy anodized in tartaric-sulfuric acid bath and protected with hybrid sol-gel coating[J]. Electrochimica Acta, 2014, 124 (4): 69- 79.
6 YOGANANDAN G , BALARAJU J N , GRIPS V K W . The surface and electrochemical analysis of permanganate based conversion coating on alclad and unclad 2024 alloy[J]. Applied Surface Science, 2012, 258 (22): 8880- 8888.
doi: 10.1016/j.apsusc.2012.05.108
7 SIEBER M , MORGENSTERN R , LAMPKE T . Anodic oxidation of the AlCu4Mg1 aluminium alloy with dynamic current control[J]. Surface & Coatings Technology, 2016, 302, 515- 522.
8 MA Y , ZHOU X , THOMPSON G E , et al. Anodic film formation on AA 2099-T8 aluminum alloy in tartaric-sulfuric acid[J]. Journal of the Electrochemical Society, 2011, 158 (2): C17- C22.
doi: 10.1149/1.3523262
9 MINGO B , NĚMCOVÁ A , HAMAD D , et al. Efficiency of anodising of Al-Cu alloy in sulphuric acid at low potentials[J]. Transactions of the Institute of Metal Finishing, 2015, 93 (1): 18- 23.
doi: 10.1179/0020296714Z.000000000217
10 KAO T T , CHANG Y C . Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids[J]. Applied Surface Science, 2014, 288 (1): 654- 659.
11 AERTS T , DIMOGERONTAKIS T , GRAEVE I D , et al. Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film[J]. Surface & Coatings Technology, 2007, 201 (16): 7310- 7317.
12 YOGANANDAN G , BALARAJU J N , LOW C H C , et al. Electrochemical and long term corrosion behavior of Mn and Mo oxyanions sealed anodic oxide surface developed on aerospace aluminum alloy (AA2024)[J]. Surface & Coatings Technology, 2016, 288, 115- 125.
13 刘建华, 刘洲, 于美, 等. 3种溶液体系下铝合金阳极氧化膜的性能[J]. 中国有色金属学报, 2012, 22 (7): 2031- 2039.
13 LIU J H , LIU Z , YU M , et al. Properties of aluminum alloy anodic films formed in three kinds of solutions[J]. The Chinese Journal of Nonferrous Metals, 2012, 22 (7): 2031- 2039.
14 刘建华, 高庆娜, 李英东, 等. 5A06和2A12铝合金在硫酸-己二酸中阳极氧化行为及膜层电化学性能[J]. 北京航空航天大学学报, 2015, 41 (5): 757- 763.
14 LIU J H , GAO Q N , LI Y D , et al. Oxidation behavior of 5A06 and 2A12 aluminum alloys in sulfuric-adipic acid and electrochemical property of anodic oxide film[J]. Journal of Beijing University of Aeronautics & Astronautics, 2015, 41 (5): 757- 763.
15 LI Y D , ZHANG Y , LI S M , et al. Influence of adipic acid on anodic film formation and corrosion resistance of 2024 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2016, 26 (2): 492- 500.
doi: 10.1016/S1003-6326(16)64137-7
16 VEYSRENAUX D , CHAHBOUN N , ROCCA E . Anodizing of multiphase aluminium alloys in sulfuric acid: in-situ electrochemical behavior and oxide properties[J]. Electrochimica Acta, 2016, 211, 1056- 1065.
doi: 10.1016/j.electacta.2016.06.131
17 颜杰红, 彭超. 苯甲酸钠含量对硼酸-硫酸阳极氧化膜形貌和性能的影响[J]. 材料保护, 2013, (10): 18- 19.
17 YAN J H , PENG C . Effect of sodium benzoate content on the morphology and properties of boric acid-sulfuric acid anodizing film[J]. Materials Protection, 2013, (10): 18- 19.
18 SAEEDIKHANI M , JAVIDI M , YAZDANI A . Anodizing of 2024-T3 aluminum alloy in sulfuric-boric-phosphoric acids and its corrosion behavior[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (9): 2551- 2559.
doi: 10.1016/S1003-6326(13)62767-3
19 王帅星, 赵晴, 杜楠, 等. 铈盐对铝合金硼酸-硫酸阳极氧化膜的封闭效应[J]. 中国有色金属学报, 2012, 22 (4): 1132- 1141.
19 WANG S X , ZHAO Q , DU N , et al. Sealing effect of cerium salt on boric-sulfuric acid anodic film of aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22 (4): 1132- 1141.
20 HITZIG J , JVTTNER K , LORENZ W J , et al. AC-impedance measurements on porous aluminium oxide films[J]. Corrosion Science, 1984, 24 (11-12): 945- 952.
doi: 10.1016/0010-938X(84)90115-X
[1] 陈高红, 张月, 李应权, 刘建华, 于美. 缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响[J]. 材料工程, 2022, 50(2): 153-163.
[2] 孙辉, 武会宾, 张游游, 袁睿, 张志慧. Cr含量对CrMnFeNi系高熵合金腐蚀行为的影响[J]. 材料工程, 2022, 50(11): 127-134.
[3] 蒋诗语, 袁媛, 陈涛, 谷达冲. 元素固溶与析出对镁合金耐蚀性影响的研究进展[J]. 材料工程, 2021, 49(12): 40-47.
[4] 孙文昕, 樊丽君, 郑钟印, 邹玉红, 田景睿, 曾荣昌. 医用金属表面含锶涂层耐蚀性和生物相容性研究进展[J]. 材料工程, 2021, 49(12): 72-82.
[5] 唐全, 张锁德, 徐民, 王建强. 陶瓷颗粒添加对热喷涂不锈钢涂层耐蚀性的影响[J]. 材料工程, 2021, 49(11): 125-135.
[6] 杜春燕, 赵晖, 赵海涛. 纯钛表面载银微弧氧化陶瓷膜的制备及性能[J]. 材料工程, 2020, 48(8): 157-162.
[7] 宿辉, 刘辉, 张春波. AZ91D镁合金表面环境友好直接化学镀镍工艺研究[J]. 材料工程, 2020, 48(8): 163-168.
[8] 李伟, 李争显, 刘林涛, 耿娟娟, 相远帆, 王凯凯. 多孔金属流场双极板研究进展[J]. 材料工程, 2020, 48(5): 31-40.
[9] 徐小宁, 何保军, 张国鹏, 刘忠侠, 张国涛. KH560处理对Al-Al2O3-硅烷复合涂层耐蚀性的影响[J]. 材料工程, 2020, 48(5): 151-159.
[10] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[11] 鲍亚运, 纪秀林, 姬翠翠, 赵建华, 程江波, 徐霖. 激光熔覆FeCrNiCoCuAlx高熵合金涂层的耐腐蚀与抗冲蚀性能[J]. 材料工程, 2019, 47(11): 141-147.
[12] 杨胶溪, 贾无名, 王欣, 文强, 张晏玮, 柏广海, 王荣山. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程, 2018, 46(8): 120-126.
[13] 杨慧慧, 杨晶晶, 喻寒琛, 王泽敏, 曾晓雁. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8): 127-133.
[14] 郑欢欢, 刘鑫禹, 陈亚楠, 张从林, 吕鹏, 蔡杰, 关庆丰. 20钢强流脉冲电子束表面合金化的微观组织和性能[J]. 材料工程, 2018, 46(7): 127-135.
[15] 刘军, 张金玲, 渠治波, 于彦冲, 许并社, 王社斌. 稀土Gd对AZ31镁合金耐蚀性能的影响[J]. 材料工程, 2018, 46(6): 73-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn