A series of expanded graphite (EG)/paraffin composites with various EG contents were prepared for Li-ion battery thermal management, in which paraffin was chosen as PCM and EG as the promoter of thermal conductivity. The thermal conductivity of the samples was measured by a thermal conductivity analyzer based on the transient hot wire method.The effect of EG content in composite on Li-ion battery thermal management was investigated. The thermal management performance of EG/PCM composites with different thermal conductivity was also discussed by software ANSYS. The results show that:EG incorporation dramatically enhances the thermal conductivity of PCM; the thermal conductivity of EG/PCM shows anisotropy, with EG content equaling to or exceeding 9%; The temperature of Li-ion battery surface decreases with an increase in EG content of composite, EG(12)/PCM(88) exhibits excellent thermal management for Li-ion battery.To adequately increase the thermal conductivity of EG/PCM in radial direction is beneficial to improve Li-ion battery thermal management.
HOSSAIN R , MAHMUD S , DUTTA A , et al. Energy storage system based on nanoparticle-enhanced phase change material inside porous medium[J]. International Journal of Thermal Sciences, 2015, 91, 49- 58.
doi: 10.1016/j.ijthermalsci.2014.12.023
2
ZHANG H , BAEYENS J , CÁCERES G , et al. Thermal energy storage: recent developments and practical aspects[J]. Progress in Energy and Combustion Science, 2016, 53, 1- 40.
doi: 10.1016/j.pecs.2015.10.003
LIU J W , YANG W B , XIE C Q , et al. Preparation and properties of HDPE/EG/paraffin thermal conducting shape-stabilized phase change material[J]. Journal of Materials Engineering, 2015, 43 (4): 42- 46.
doi: 10.11868/j.issn.1001-4381.2015.04.008
GAO X N , LIU X , SUN T , et al. Research on the thermal management performance of electronic chip with composite phase change material[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27 (2): 187- 192.
5
ALSHAER W G , NADA S A , RADY M A , et al. Numerical investigations of using carbon foam/PCM/nano carbon tubes composites in thermal management of electronic equipment[J]. Energy Conversion and Management, 2015, 89, 873- 884.
doi: 10.1016/j.enconman.2014.10.045
6
HALLAJ S A , SELMAN J R . A novel thermal management system for electric vehicle batteries using phase-change material[J]. Journal of the Electrochemical Society, 2000, 147 (9): 3231- 3236.
doi: 10.1149/1.1393888
7
KHATEEB S A , FARID M M , SELMAN J R , et al. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter[J]. Journal of Power Sources, 2004, 128 (2): 292- 307.
doi: 10.1016/j.jpowsour.2003.09.070
8
LI W Q , QU Z G , HE Y L , et al. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials[J]. Journal of Power Sources, 2014, 255 (6): 9- 15.
HUA J S , ZHANG J , ZHANG Y , et al. Study on properties and shape-stabilizing expanded graphite/paraffin composite phase change material[J]. Mater REV:Res, 2016, 30 (12): 61- 64.
HU X D , GAO X N , LI D L , et al. Performance of paraffin/expanded graphite composite phase change material[J]. CIESE Journal, 2013, 64 (10): 3831- 3837.
11
MILLS A , AL-HALLAJ S . Simulation of passive thermal management system for lithium-ion battery packs[J]. Journal of Power Sources, 2005, 141 (2): 307- 315.
doi: 10.1016/j.jpowsour.2004.09.025
12
KIZILEL R , LATEEF A , SABBAH R , et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J]. Journal of Power Sources, 2008, 183 (1): 370- 375.
doi: 10.1016/j.jpowsour.2008.04.050
LIU C Z , ZHANG G Q , WANG Z Y , et al. Preparation of expanded graphite/paraffin composite materials and their heat dissipation characteristics in power eattery thermal management system[J]. Advances in New and Renewable Energy, 2014, 2 (3): 233- 238.
14
LIN C , XU S , CHANG G , et al. Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets[J]. Journal of Power Sources, 2015, 275, 742- 749.
doi: 10.1016/j.jpowsour.2014.11.068
15
LING Z , WANG F , FANG X , et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015, 148, 403- 409.
doi: 10.1016/j.apenergy.2015.03.080
16
BERNARDI D , PAWLIKOWSKI E , NEWMAN J . A generalenergy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132 (1): 5- 12.
doi: 10.1149/1.2113792
17
XIA L , ZHANG P , WANG R Z . Preparation and thermal characterization of expanded graphite/paraffin composite phase change material[J]. Carbon, 2010, 48 (9): 2538- 2548.
doi: 10.1016/j.carbon.2010.03.030
18
LUO J F , YIN H W , LI W Y , et al. Numerical and experimental study on the heat transfer properties of the composite paraffin/expanded graphite phase change material[J]. International Journal of Heat and Mass Transfer, 2015, 84, 237- 244.
doi: 10.1016/j.ijheatmasstransfer.2015.01.019
19
WANG Z , ZHANG Z , JIA L , et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering, 2015, 78, 428- 436.
doi: 10.1016/j.applthermaleng.2015.01.009