Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (7): 41-47    DOI: 10.11868/j.issn.1001-4381.2016.000919
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
膨胀石墨/石蜡复合材料的制备及热管理性能
姜贵文(), 黄菊花
南昌大学 机电工程学院, 南昌 330031
Preparation and Thermal Management of Expanded Graphite/Paraffin Composite for Li-ion Battery
Gui-wen JIANG(), Ju-hua HUANG
School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China
全文: PDF(3093 KB)   HTML ( 19 )  
输出: BibTeX | EndNote (RIS)      
摘要 

石蜡作为相变材料(PCM),膨胀石墨(EG)为导热增强剂,制备不同EG含量的膨胀石墨/石蜡(EG/PCM)复合材料。采用瞬态热线法测量样品的导热系数;把EG/PCM应用于锂离子电池热管理,研究不同EG含量的EG/PCM热管理性能;采用ANSYS软件分析EG/PCM的导热系数对锂离子电池热管理的影响。结果表明:EG的加入大幅度提高了PCM的导热系数,EG含量≥9%时,EG/PCM的导热系数呈各向异性;锂离子电池表面温度随EG含量增加而减小,EG(12)/PCM(88)表现出优异的热管理性能;适当地提高EG/PCM的径向导热系数,有利于提高它的热管理性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜贵文
黄菊花
关键词 PCMEG导热系数热管理锂离子电池    
Abstract

A series of expanded graphite (EG)/paraffin composites with various EG contents were prepared for Li-ion battery thermal management, in which paraffin was chosen as PCM and EG as the promoter of thermal conductivity. The thermal conductivity of the samples was measured by a thermal conductivity analyzer based on the transient hot wire method.The effect of EG content in composite on Li-ion battery thermal management was investigated. The thermal management performance of EG/PCM composites with different thermal conductivity was also discussed by software ANSYS. The results show that:EG incorporation dramatically enhances the thermal conductivity of PCM; the thermal conductivity of EG/PCM shows anisotropy, with EG content equaling to or exceeding 9%; The temperature of Li-ion battery surface decreases with an increase in EG content of composite, EG(12)/PCM(88) exhibits excellent thermal management for Li-ion battery.To adequately increase the thermal conductivity of EG/PCM in radial direction is beneficial to improve Li-ion battery thermal management.

Key wordsphase change material    expanded graphite    thermal conductivity    thermal management    Li-ion battery
收稿日期: 2016-07-30      出版日期: 2017-07-21
中图分类号:  TK02  
基金资助:江西省高等学校教育厅高等学校落地计划项目(XILD11022)
通讯作者: 姜贵文     E-mail: jgw_cailiao@163.com
作者简介: 姜贵文(1978-), 男, 博士, 研究方向:复合相变材料及电池热管理研究, 联系地址:江西省南昌市南昌大学前湖校区机电工程学院(330031), E-mail:jgw_cailiao@163.com
引用本文:   
姜贵文, 黄菊花. 膨胀石墨/石蜡复合材料的制备及热管理性能[J]. 材料工程, 2017, 45(7): 41-47.
Gui-wen JIANG, Ju-hua HUANG. Preparation and Thermal Management of Expanded Graphite/Paraffin Composite for Li-ion Battery. Journal of Materials Engineering, 2017, 45(7): 41-47.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000919      或      http://jme.biam.ac.cn/CN/Y2017/V45/I7/41
Fig.1  EG/PCM复合材料样品(a)粉末;(b)板状块体和空圆柱体
Fig.2  采用瞬态热线法测试样品导热系数的原理图(a)实验装置示意图;(b)测轴向导热系数;(c)测径向导热系数
Fig.3  裹有PCM的电池物理模型及网格分布
Fig.4  样品SEM图片(a),(b)EG; (c)EG/PCM
Fig.5  不同EG含量时EG/PCM复合材料的导热系数
Fig.6  有效热传导模型(a)并联模型;(b)串联模型
Mass fraction of EG/% kmax/(W·m-1·K-1) kmin/(W·m-1·K-1) kradial/(W·m-1·K-1) kaxial/(W·m-1·K-1)ψ value
Eq. (10) Eq. (11)
9 7.51 0.208 3.50 2.80 0.451 0.690
12 10.25 0.212 5.74 4.31 0.553 0.588
16 13.91 0.216 7.51 5.70 0.576 0.591
20 17.7 0.220 10.10 7.22 0.590 0.601
Table 1  不同EG含量的EG/PCM复合材料的ψ值
Fig.7  5C放电,电池表面及PCM外表面的温度变化曲线
Fig.8  不同EG/PCM的导热系数下电池表面温度变化曲线
1 HOSSAIN R , MAHMUD S , DUTTA A , et al. Energy storage system based on nanoparticle-enhanced phase change material inside porous medium[J]. International Journal of Thermal Sciences, 2015, 91, 49- 58.
doi: 10.1016/j.ijthermalsci.2014.12.023
2 ZHANG H , BAEYENS J , CÁCERES G , et al. Thermal energy storage: recent developments and practical aspects[J]. Progress in Energy and Combustion Science, 2016, 53, 1- 40.
doi: 10.1016/j.pecs.2015.10.003
3 刘菁伟, 杨文彬, 谢长琼, 等. HDPE/EG/石蜡导热定形相变材料的制备及性能[J]. 材料工程, 2015, 43 (4): 42- 46.
doi: 10.11868/j.issn.1001-4381.2015.04.008
3 LIU J W , YANG W B , XIE C Q , et al. Preparation and properties of HDPE/EG/paraffin thermal conducting shape-stabilized phase change material[J]. Journal of Materials Engineering, 2015, 43 (4): 42- 46.
doi: 10.11868/j.issn.1001-4381.2015.04.008
4 高学农, 刘欣, 孙滔, 等. 基于复合相变材料的电子芯片热管理性能研究[J]. 高校化学工程学报, 2013, 27 (2): 187- 192.
4 GAO X N , LIU X , SUN T , et al. Research on the thermal management performance of electronic chip with composite phase change material[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27 (2): 187- 192.
5 ALSHAER W G , NADA S A , RADY M A , et al. Numerical investigations of using carbon foam/PCM/nano carbon tubes composites in thermal management of electronic equipment[J]. Energy Conversion and Management, 2015, 89, 873- 884.
doi: 10.1016/j.enconman.2014.10.045
6 HALLAJ S A , SELMAN J R . A novel thermal management system for electric vehicle batteries using phase-change material[J]. Journal of the Electrochemical Society, 2000, 147 (9): 3231- 3236.
doi: 10.1149/1.1393888
7 KHATEEB S A , FARID M M , SELMAN J R , et al. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter[J]. Journal of Power Sources, 2004, 128 (2): 292- 307.
doi: 10.1016/j.jpowsour.2003.09.070
8 LI W Q , QU Z G , HE Y L , et al. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials[J]. Journal of Power Sources, 2014, 255 (6): 9- 15.
9 华建社, 张娇, 张焱, 等. 膨胀石墨/石蜡复合相变蓄热材料的热性能及定形性研究[J]. 材料导报, 2016, 30 (12): 61- 64.
9 HUA J S , ZHANG J , ZHANG Y , et al. Study on properties and shape-stabilizing expanded graphite/paraffin composite phase change material[J]. Mater REV:Res, 2016, 30 (12): 61- 64.
10 胡小冬, 高学农, 李得伦, 等. 石蜡/膨胀石墨定形相变材料的性能[J]. 化工学报, 2013, 64 (10): 3831- 3837.
10 HU X D , GAO X N , LI D L , et al. Performance of paraffin/expanded graphite composite phase change material[J]. CIESE Journal, 2013, 64 (10): 3831- 3837.
11 MILLS A , AL-HALLAJ S . Simulation of passive thermal management system for lithium-ion battery packs[J]. Journal of Power Sources, 2005, 141 (2): 307- 315.
doi: 10.1016/j.jpowsour.2004.09.025
12 KIZILEL R , LATEEF A , SABBAH R , et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J]. Journal of Power Sources, 2008, 183 (1): 370- 375.
doi: 10.1016/j.jpowsour.2008.04.050
13 刘臣臻, 张国庆, 王子缘, 等. 膨胀石墨/石蜡复合材料的制备及其在动力电池热管理系统中的散热特性[J]. 新能源进展, 2014, 2 (3): 233- 238.
13 LIU C Z , ZHANG G Q , WANG Z Y , et al. Preparation of expanded graphite/paraffin composite materials and their heat dissipation characteristics in power eattery thermal management system[J]. Advances in New and Renewable Energy, 2014, 2 (3): 233- 238.
14 LIN C , XU S , CHANG G , et al. Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets[J]. Journal of Power Sources, 2015, 275, 742- 749.
doi: 10.1016/j.jpowsour.2014.11.068
15 LING Z , WANG F , FANG X , et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015, 148, 403- 409.
doi: 10.1016/j.apenergy.2015.03.080
16 BERNARDI D , PAWLIKOWSKI E , NEWMAN J . A generalenergy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132 (1): 5- 12.
doi: 10.1149/1.2113792
17 XIA L , ZHANG P , WANG R Z . Preparation and thermal characterization of expanded graphite/paraffin composite phase change material[J]. Carbon, 2010, 48 (9): 2538- 2548.
doi: 10.1016/j.carbon.2010.03.030
18 LUO J F , YIN H W , LI W Y , et al. Numerical and experimental study on the heat transfer properties of the composite paraffin/expanded graphite phase change material[J]. International Journal of Heat and Mass Transfer, 2015, 84, 237- 244.
doi: 10.1016/j.ijheatmasstransfer.2015.01.019
19 WANG Z , ZHANG Z , JIA L , et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering, 2015, 78, 428- 436.
doi: 10.1016/j.applthermaleng.2015.01.009
[1] 韩富娟, 常增花, 赵金玲, 王仁念, 丁海洋, 卢世刚. 高镍三元锂离子电池低温放电性能研究进展[J]. 材料工程, 2022, 50(9): 1-17.
[2] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[3] 何仁杰, 李书萍, 王许敏, 余创, 程时杰, 谢佳. 锂离子电池厚电极结构设计的研究进展[J]. 材料工程, 2022, 50(10): 38-54.
[4] 汪晨阳, 张安邦, 常增花, 吴帅锦, 刘智, 庞静. 锂离子电池用多孔电极结构设计及制备技术进展[J]. 材料工程, 2022, 50(1): 67-79.
[5] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[6] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[7] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[8] 欧阳丽霞, 武兆辉, 王建涛. 锂离子电池浆料的制备技术及其影响因素[J]. 材料工程, 2021, 49(7): 21-34.
[9] 张健华, 张伟, 余章龙, 史碧梦, 杨娟玉. 锂离子电池用三维网状水系黏结剂的研究进展[J]. 材料工程, 2021, 49(6): 44-54.
[10] 虞兮凡, 赵伶玲. 热电材料β-Cu2-xSe热传导性能模拟研究[J]. 材料工程, 2021, 49(2): 121-126.
[11] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[12] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[13] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[14] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[15] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn