Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels
YANG Zhi-qiang1, LIU Zheng-dong1, HE Xi-kou1, LIU Ning1,2
1. Institute for Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China;
2. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Abstract:The high-temperature plastic deformation and dynamic recrystallization behavior of SA508Gr.4N steel were investigated through hot deformation tests in a Gleeble1500D thermal mechanical simulator. The compression tests were performed in the temperature range of 1050-1250℃ and the strain rate range of 0.001-0.1s-1 with true strain of 0.16. The results show that from the high-temperature true stress-strain curves of the SA508Gr.4N steel, the main feature is dynamic recrystallization,and the peak stress increases with the decrease of deformation temperature or the increase of strain rate, indicating the experimental steel is temperature and strain rate sensitive material. The constitutive equation for SA508Gr.4N steel is established on the basis of the true stress-strain curves, and exhibits the characteristics of the high-temperature flow behavior quite well, while the activation energy of the steel is determined to be 383.862kJ/mol. Furthermore, an inflection point is found in the θ-σ curve, while the -dθ/dσ-σ curve shows a minimum value. The critical strain increases with increasing strain rate and decreasing deformation temperature. A linear relationship between critical strain (εc) and peak strain (εp) is found and could be expressed as εc/εp=0.517. The predicted model of critical strain could be described as εc=8.57×10-4Z0.148.
杨志强, 刘正东, 何西扣, 刘宁. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 45(8): 88-95.
YANG Zhi-qiang, LIU Zheng-dong, HE Xi-kou, LIU Ning. Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels. Journal of Materials Engineering, 2017, 45(8): 88-95.
[1] YASUHIKO T, IKUO S. Development of high purity large forgings for nuclear power plants[J]. Journal of Nuclear Materials, 2011, 417:854-859.
[2] SUZUKI K, KURIHARA I, SASAKI T, et al. Application of high strength Mn-Mo-Ni steel to pressure vessels for nuclear power plant[J]. Nuclear Engineering and Design, 2001, 206:261-278.
[3] 冯柳, 周邦新, 彭剑超, 等. RPV模拟钢中纳米富Cu析出相的复杂晶体结构表征[J]. 材料工程, 2015, 43(7):80-86. FENG L, ZHOU B X, PENG J C, et al. Characterization of a complex crystal structure within Cu-rich precipitates in RPV model steel[J]. Journal of Materials Engineering, 2015, 43(7):80-86.
[4] 何西扣, 李昌义, 刘正东, 等. 反应堆压力容器用低合金钢平衡相热力学计算与分析[J]. 金属热处理, 2013, 38(5):14-17. HE X K, LI C Y, LIU Z D, et al. Thermodynamic calculation and analysis on equilibrium phase in low alloy steel for reactor pressure vessel[J]. Heat Treatment of Metals, 2013, 38(5):14-17.
[5] JIN H H, KWON J, SHIN C S. Evolution of radiation defect and radiation hardening in heat treated SA508 Gr3 steel[J]. Nuclear Instruments and Methods in Physics Research Section B, 2014, 319:24-28.
[6] HECTOR P R, HARRY K D H B. Continuous cooling transformations in nuclear pressure vessel steels[J]. Metallurgical and Materials Transactions A, 2014, 45(11):4897-4906.
[7] 王小彬, 李玉光, 罗英, 等. 超临界水冷堆压力容器设计[J]. 一重技术, 2015, (3):18-21. WANG X B, LI Y G, LUO Y, et al. Design of supercritical water-cooled reactor pressure vessel[J]. CFHI Technology, 2015, (3):18-21.
[8] 李昌义, 刘正东, 林肇杰, 等. 反应堆压力容器用钢的淬透性问题[J]. 材料热处理学报, 2011, 32(6):68-72. LI C Y, LIU Z D, LIN Z J, et al. Hardenability of nuclear reactor pressure vessel steels[J]. Transactions of Materials and Heat Treatment, 2011, 32(6):68-72.
[9] PARK S G, LEE K H, MIN K D, et al. Characterization of phase fractions and disorientations on tempered bainitic/martensitic Ni-Cr-Mo low alloy RPV steel with various Ni content[J]. Metals and Materials International, 2013, 19(1):49-54.
[10] PARK S G, KIM M C, LEE K H, et al. Correlation of the thermodynamic calculation and the experimental observation of Ni-Mo-Cr low alloy steel changing Ni, Mo, and Cr contents[J]. Journal of Nuclear Materials, 2010, 407:126-135.
[11] KIM M C, PARK S G, LEE K H, et al. Comparison of fracture properties in SA508 Gr.3 and Gr.4N high strength low alloy steels for advanced pressure vessel materials[J]. International Journal of Pressure Vessels and Piping, 2015, 131:60-66.
[12] 杨志强, 刘勇, 田保红, 等. TiC/Cu-Al2O3 复合材料的强化机理及动态再结晶行为[J]. 中国有色金属学报, 2014, 24(6):1524-1531. YANG Z Q, LIU Y, TIAN B H, et al. Strengthening mechanism and dynamic recrystallization behavior of TiC/Cu-Al2O3 composite[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(6):1524-1531.
[13] 黄烁, 王磊, 张北江, 等. GH4706合金的热变形行为与显微组织演变[J]. 材料工程, 2015, 43(2):41-46. HUANG S, WANG L, ZHANG B J, et al. Hot deformation behavior and microstructure evolution of GH4706 alloy[J]. Journal of Materials Engineering, 2015, 43(2):41-46.
[14] 陈贵清, 傅高升, 程超增, 等. 应变速率对3003铝合金热变形动态再结晶组织的影响[J]. 材料热处理学报, 2012, 33(10):26-31. CHEN G Q, FU G S, CHENG C Z, et al. Effects of strain rate on dynamic recrystallization microstructure of 3003 aluminum alloy in process of hot deformation[J]. Transactions of Materials and Heat Treatment, 2012, 33(10):26-31.
[15] SELLARS C M, MCTEGART W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.
[16] 仇琍丽, 高文理, 陆政, 等. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1):33-39. QIU L L, GAO W L, LU Z, et al. Flow behavior and microstructure of 7A85 aluminum alloy during hot compression[J]. Journal of Materials Engineering, 2016, 44(1):33-39.
[17] 袁武华, 龚雪辉, 孙永庆, 等. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J].材料工程,2016,44(5):8-14. YUAN W H, GONG X H, SUN Y Q, et al. Hot deformation behavior and processing map of 0Cr16Ni5Mo low carbon martensitic stainless steel[J]. Journal of Materials Engineering, 2016, 44(5):8-14.
[18] POLIAK E I, JONAS J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ International, 2003, 43(5):684-691.
[19] 赵业青, 李岩, 鲁法云, 等. 7150铝合金热变形行为及微观组织[J]. 航空材料学报, 2015, 35(3):18-23. ZHAO Y Q, LI Y, LU F Y, et al. Flow stress behavior and microstructure of 7150 aluminum alloy during hot deformation[J]. Journal of Aeronautical Materials, 2015, 35(3):18-23.
[20] 高英俊, 罗志荣, 黄礼琳, 等. 变形合金的亚晶组织演变的相场模型[J]. 金属学报, 2012, 48(10):1215-1222. GAO Y J, LUO Z R, HUANG L L, et al. Phase field model for microstructure evolution of subgrain in deformation alloy[J]. Acta Metallurgica Sinica, 2012, 48(10):1215-1222.
[21] HUANG K, LOGE R E. A review of dynamic recrystallization phenomena in metallic materials[J]. Materials & Design, 2016, 111:548-574.
[22] YANG Z Q, LIU Y, TIAN B H, et al. Model of critical strain for dynamic recrystallization in 10%TiC/Cu-Al2O3 composite[J]. Journal of Central South University, 2014, 21(11):4059-4065.
[23] FANG B, JI Z, LIU M, et al. Critical strain and models of dynamic recrystallization for FGH96 superalloy during two-pass hot deformation[J]. Materials Science and Engineering:A, 2014, 593:8-15.