Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (9): 13-21    DOI: 10.11868/j.issn.1001-4381.2016.001226
  综述 本期目录 | 过刊浏览 | 高级检索 |
金属增材制造技术发展动向及无损检测研究进展
杨平华1,2,3, 高祥熙1,2,3, 梁菁1,2,3, 史亦韦1,2,3, 徐娜1,2,3
1 北京航空材料研究院, 北京 100095;
2 航空材料检测与评价北京市重点实验室, 北京 100095;
3 材料检测与评价航空科技重点实验室, 北京 100095
Development Tread and NDT Progress of Metal Additive Manufacture Technique
YANG Ping-hua1,2,3, GAO Xiang-xi1,2,3, LIANG Jing1,2,3, SHI Yi-wei1,2,3, XU Na1,2,3
1 Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2 Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, Beijing 100095, China;
3 Aviation Key Laboratory of Science and Technology on Aeronautical Materials Testing and Evaluation, Beijing 100095, China
全文: PDF(3257 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 简要论述金属增材制造技术的国内外发展动向、应用情况,以及金属增材制造制件的特点和检测难点等;重点报道金属增材制造制件无损检测研究进展,主要包括金属增材制造的主要工艺类型及缺陷特征、组织特征,缺陷对性能影响的分析,无损检测方法研究现状,以及无损检测标准方面的最新进展等。在此基础上,对金属增材制造制件无损检测未来应关注的研究方向给出建议,即无损检测新技术的应用、在线检测方法、数值模拟技术、应力测试与特征技术和无损检测方法标准的建立和完善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨平华
高祥熙
梁菁
史亦韦
徐娜
关键词 增材制造无损检测金属制件航空航天    
Abstract:The application and new development trend of metal additive manufacture technique were introduced, as well as the characteristic and NDT difficulty of metal additive manufacture products. The research progress of NDT was analyzed in emphasis, including the classification of metal additive manufacture technique, the characteristics of defect and microstructure, the influence of defects on mechanical properties, the latest development of NDT methods and standards. Based on that, the key issues that will be focused were summarized at last, that is the application of new NDT methods, on-line monitoring technology, numerical simulation, measurement and characterization of stress, as well as the establishment and development of NDT standards.
Key wordsadditive manufacture    NDT    metal product    aerospace
收稿日期: 2016-10-14      出版日期: 2017-09-16
中图分类号:  TG115.28  
通讯作者: 杨平华(1985-),女,工程师,硕士,主要从事材料无损检测与评价技术研究工作,联系地址:北京市81信箱6分箱(100095),E-mail:yangpinghua@126.com     E-mail: yangpinghua@126.com
引用本文:   
杨平华, 高祥熙, 梁菁, 史亦韦, 徐娜. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45(9): 13-21.
YANG Ping-hua, GAO Xiang-xi, LIANG Jing, SHI Yi-wei, XU Na. Development Tread and NDT Progress of Metal Additive Manufacture Technique. Journal of Materials Engineering, 2017, 45(9): 13-21.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001226      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/13
[1] 王华明,张述泉,王向明.大型钛合金结构件激光直接制造的进展及挑战[J].中国激光,2009,36(12):3204-3209. WANG H M,ZHANG S Q,WANG X M. Progress and challenges of laser direct manufacturing of large titanium structural components[J]. Chinese Journal of Lasers,2009,36(12):3204-3209.
[2] YONG H,MING C L,JYOTI M,et al. Additive manufacturing:current state, future potential, gaps and needs, and recommendations[J]. Journal of Manufacturing Science and Engineering,2015(137):1-10.
[3] CHUA C K,CHOU S M,WONG T S. A study of the state-of-the-art rapid prototyping technologies[J]. The International Journal of Advanced Manufacturing Technology,1998(14):146-152.
[4] 王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报,2014,35(10):2690-2698. WANG H M. Materials'fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica,2014,35(10):2690-2698.
[5] 巩水利.高能束流加工技术在航空发动机领域的应用[J].航空制造技术,2013(9):34-37. GONG S L. Application of high power beam processing technology in aero engine[J]. Aeronautical Manufacturing Technology,2013(9):34-37.
[6] 王延庆,沈竞兴,吴海全. 3D打印材料应用和研究现状[J].航空材料学报,2016,36(4):89-98. WANG Y Q,SHEN J X,WU H Q.Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials,2016,36(4):89-98.
[7] 张学军,唐思熠,肇恒跃,等. 3D打印技术研究现状和关键技术[J].材料工程,2016,44(2):122-128. ZHANG X J, TANG S Y, ZHAO H Y,et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering,2016,44(2):122-128.
[8] 林鑫,黄卫东.应用于航空领域的金属高性能增材制造技术[J].中国材料进展,2015,34(9):684-688. LIN X,HUANG W D. High performance metal additive manufacturing technology applied in aviation field[J]. Materials China,2015,34(9):684-688.
[9] 颜永年,张人佶,林峰,等. 快速制造技术的发展道路与发展趋势[J].电加工与模具,2007(2):25-29. YAN Y N,ZHANG R J,LIN F,et al. The development and trends of rapid manufacturing technologies[J]. Electro Machining & Mould,2007(2):25-29.
[10] 陈济轮,杨洁,于海静.国外高能束增材制造技术应用现状与最新发展[J].航天制造技术,2014(4):1-10. CHEN J L,YANG J,YU H J. The abroad application and latest development of high-energy beam additive manufacturing technology[J]. Aerospace Manufacturing Technology,2014(4):1-10.
[11] 王华明,张述泉,汤海波,等.大型钛合金结构激光快速成形技术研究进展[J].航空精密制造技术,2008,44(6):28-30. WANG H M,ZHANG S Q,TANG H B,et al. Development of laser rapid forming of large titanium structure[J]. Aviation Precision Manufacturing Technology,2008,44(6):28-30.
[12] SLOTWINSKI J A. Additive manufacturing:overview and NDE challenges[J]. AIP Conference Proceedings,2014(158):1173-1177.
[13] 胡亮.航天增材制造项目发展战略研究初探[J].军民两用技术与产品,2014(9):132-135. HU L. Research on development strategy of aerospace additive manufacturing[J]. Dual Use Technologies & Products,2014(9):132-135.
[14] WALLER J M,SAULSBERRY R L,PARKER B H,et al. Summary of NDE of additive manufacturing efforts in NASA[C]//AIP Conference Proceedings. AIP conference:AIP publishing,2015:51-62.
[15] BAMBERG J,DUSEL K H,SATZGER W,et al. Overview of additive manufacturing activities at MTU aero engines[C]//AIP Conference Proceedings. AIP Conference:AIP Publishing,2015:156-163.
[16] KOESTER L,TAHERI H,BOND L J,et al. Additive manufacturing metrology:state of the art and needs assessment[C]//AIP Conference Proceedings. AIP Conference:AIP Publishing,2016:1-8.
[17] 凌松.增材制造技术及其制品的无损检测进展[J].无损检测,2016,38(6):60-64. LING S. Additive manufacture technique and related NDT for its product[J]. Nondestructive Testing,2016,38(6):60-64.
[18] 黄丹,朱志华,耿海滨,等. 5A06铝合金TIG丝材-电弧增材制造工艺[J].材料工程,2017,45(3):66-72. HUANG D,ZHU Z H,GENG H B,et al.TIG wire and arc additive manufacturing of 5A06 aluminum alloy[J]. Journal of Materials Engineering,2017,45(3):66-72.
[19] KOBRYN P A,MOORE E H,SEMIATIN S L. The effect of laser power and traverse speed on microstructure, porosity, and build height in laser deposited Ti-6Al-4V[J]. Scripta Materialia,2000,43(4):299-305.
[20] WU X H,LIANG J,MEI J F,et al. Microstructures of laser deposited Ti-6Al-4V alloy[J]. Materials & Design,2004,25(2):137-144.
[21] DUTTA M J,PINKERTON A,LIU Z,et al. Microstructure characterization and process optimization of laser assisted rapid fabrication of 316L stainless steel[J]. Applied Surface Science, 2005(247):320-327.
[22] 张凤英,陈静,谭华,等.钛合金激光快速成形过程中缺陷形成机理研究[J].稀有金属材料与工程,2007,36(2):211-215. ZHANG F Y,CHEN J,TAN H,et al. Research on forming mechanism of defects in laser rapid formed titanium alloy[J]. Rare Metal Materials and Engineering,2007,36(2):211-215.
[23] 汤慧萍,王健,逯圣路,等.电子束选区熔化成形技术研究进展[J].中国材料进展,2015,34(3):225-235. TANG H P,WANG J,LU S L,et al. Research progress in selective electron beam melting[J]. Materials China,2015,34(3):225-235.
[24] 陈静,杨海鸥,杨健,等.TC4钛合金的激光快速成形特性及熔凝组织[J].稀有金属快报,2004,23(4):33-37. CHEN J,YANG H O,YANG J,et al. Fused organization of laser rapid formed TC4 titanium alloy[J]. Rare Metals Letters,2004,23(4):33-37.
[25] 张霜银,林鑫,陈静,等.工艺参数对激光快速成形TC4钛合金组织及成形质量的影响[J].稀有金属材料与工程,2007,36(10):1839-1843. ZHANG S Y,LIN X,CHEN J,et al. Influence of processing parameter on the microstructure and forming characterizations of Ti-6Al-4V titanium alloy after laser rapid forming processing[J]. Rare Metal Materials and Engineering,2007,36(10):1839-1843.
[26] 陈哲源,锁红波,李晋炜.电子束熔丝沉积快速制造成型技术与组织特征[J].航天制造技术,2010(1):36-39. CHEN Z Y,SUO H B,LI J W. The forming character of electron beam freeform fabrication[J]. Aerospace Manufacturing Technology,2010(1):36-39.
[27] 杨光,巩水利,锁红波,等.电子束快速成形TC18合金多次堆积的组织特征研究[J].航空制造技术,2013(8):71-74. YANG G,GONG S L,SUO H B,et al. Microstructure characterization of multi-deposited TC18 alloy by electron beam rapid manufacture[J]. Aeronautical Manufacturing Technology,2013(8):71-74.
[28] QIAN T T, LIU D, TIAN X J, et al. Microstructure of TA2/TA15 graded structural material by laser additive manufacturing process[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(9):2729-2736.
[29] 杨平华,史丽军,梁菁,等. TC18钛合金增材制造材料超声检测特征的试验研究[J].航空制造技术,2017,524(5):38-42. YANG P H,SHI L J,LIANG J,et al. Experimental research on ultrasonic characteristics of TC18 additive manufacturing titanium alloy[J]. Aeronautical Manufacturing Technology,2017,524(5):38-42.
[30] 文艺,姜涛,邬冠华,等. 3D打印两相钛合金组织性能研究现状[J].失效分析与预防,2016,11(1):42-46. WEN Y,JIANG T,WU G H,et al.Research status on microstructures and properties of two-phase titanium alloys by 3D printing[J]. Failure Analysis and Prevention,2016,11(1):42-46.
[31] 杨胶溪,胡星,王艳芳. TC轴承激光增材制造工艺及组织性能研究[J].材料工程,2016,44(7):61-66. YANG J X,HU X,WANG Y F.Microstructure and properties of laser additive manufacturing TC bearing[J]. Journal of Materials Engineering,2016,44(7):61-66.
[32] 王忻凯,邢丽,徐卫平,等. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J].材料工程,2015,43(5):8-12. WANG X K,XING L,XU W P,et al.Influence of process parameters on formation of friction stir additive manufacturing on aluminum alloy[J]. Journal of Materials Engineering,2015,43(5):8-12.
[33] 杜博睿,张学军,郭绍庆,等. 激光快速成形GH4169合金显微组织与力学性能[J].材料工程,2017,45(1):27-32. DU B R,ZHANG X J,GUO S Q,et al.Microstructure and mechanical properties of laser melting deposited GH4169 superalloy[J]. Journal of Materials Engineering,2017,45(1):27-32.
[34] 陈静,张霜银,薛蕾,等.激光快速成形Ti-6A1-4V合金力学性能[J].稀有金属材料与工程,2007,36(3):475-479. CHEN J,ZHANG S Y,XUE L,et al. Mechanical properties of Ti-6Al-4V alloy by laser rapid forming[J]. Rare Metal Materials and Engineering,2007,36(3):475-479.
[35] 王华明,李安,张凌云,等.激光熔粉沉积快速成形TA15钛合金的力学性能[J].航空制造技术,2008(7):26-29. WANG H M,LI A,ZHANG L Y,et al. Mechanical properties of titanium alloy TA15 fabricated by laser melting deposition manufacturing[J]. Aeronautical Manufacturing Technology,2008(7):26-29.
[36] 董翠,王华明.激光熔粉沉积300M超高强度钢组织与力学性能[J].金属热处理,2008,33(9):1-5. DONG C,WANG H M. Microstructures and mechanical properties of ultra-high strength steel 300M fabricated by laser melting deposition[J]. Metal Heat Treatment,2008,33(9):1-5.
[37] MURRA L E,QUINONES S A,GAYTANA S M,et al. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials,2009(2):20-32.
[38] MURRA L E,ESQUIVELA E V,QUINONES S A,et al. Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V[J]. Journal of the Mechanical Behavior of Biomedical Materials,2009(60):96-105.
[39] WALLER J M,PARKER B H,HODGES K L,et al. Nondestructive evaluation of additive manufacturing state-of-the-discipline report[R]. NASA/TM-2014-218560,2014.
[40] SHI Y W,YANG P H,LIANG J,et al. Relations among ultrasonic testing results and defect characteristics and material properties of laser additive manufacturing titanium alloy[C]//19th World Conference on Non-Destructive Testing. Germany, 2016.
[41] NILSSON P,APPELGREN A,HENRIKSON P,et al. Automatic ultrasonic testing for metal deposition[C]//18th World Conference on Nondestructive Testing. South Africa, 2012.
[42] RUDLIN J,CERNIGLIA D,SCAFIDI M,et al. Inspection of laser powder deposited layers[C]//11th European Conference on Non-Destructive Testing.Czech Republic, 2014.
[43] 韩立恒,巩水利,锁红波,等.A-100钢电子束熔丝成形件超声相控阵检测应用初探[J].航空制造技术,2016(8):66-70. HAN L H,GONG S L,SUO H B,et al. PAUT of A-100 steel manufactured by EBWD[J]. Aeronautical Manufacturing Technology,2016(8):66-70.
[44] ZIÖLKOWSKI G,CHLEBUS E,SZYMCZYK P,et al. Application of X-ray CT method for discontinuity and porosity detection in 316L stainless steel parts produced with SLM technology[J]. Archives of Civil and Mechanical Engineering,2014,14(4):608-614.
[45] ZANINI F,HERMANEK P,RATHORE J,et al. Investigation on the accuracy of CT porosity analysis of additive manufactured metallic parts[C]//Digital Industrial Radiology and Computed Tomography.Belgium,2015.
[46] ANTON P,STEPHAN G R,JOHAN E,et al. Application of micro CT to the non-destructive testing of an additive manufactured titanium component[J]. Case Studies in Nondestructive Testing and Evaluation,2015(4):1-7.
[47] LÉVESQUE D,BESCOND C,LORD M,et al. Inspection of additive manufactured parts using laser ultrasonics[C]//AIP Conference Proceedings. AIP conference:AIP publishing, 2016:1-9.
[48] CERNIGLIA D,SCAFIDI M,PANTANO M,et al. Inspection of additive-manufactured layered components[J]. Ultrasonics,2015(62):292-298.
[49] BAMBERG B,DUSEL K H,SATZGER W. Overview of additive manufacturing activities at MTU aero engines[C]//AIP Conference Proceedings. AIP Conference:AIP Publishing,2015:156-163.
[50] ZENZINGER G,BAMBERG J,LADEWIG A,et al. Process monitoring of additive manufacturing by using optical tomography[C]//AIP Conference Proceedings. AIP Conference:AIP Publishing, 2015:164-170.
[51] BAMBERG J,ZENZINGER G,LADEWIG A. In-process control of selective laser melting by quantitative optical tomography[C]//19th World Conference on Non-Destructive Testing,Germany,2016.
[52] KRAUSS H,ZEUGNER T,ZAEH M F. Thermo graphic process monitoring in powder bed based additive manufacturing[C]//AIP Conference Proceedings. AIP Conference:AIP Publishing, 2015:177-183.
[53] RIEDER H,DILLHÖFER A,SPIES M,et al. Online monitoring of additive manufacturing processes using ultrasound[C]//11th European Conference on Non-Destructive Testing.Czech Republic, 2014.
[54] RIEDER H,SPIES M,BAMBERG J,et al. On and offline ultrasonic characterization of components built by SLM additive manufacturing[C]//AIP Conference Proceedings. AIP Conference:AIP Publishing, 2016:1-7.
[55] RIEDER H,SPIES M,BAMBERG J,et al. On and offline ultrasonic inspection of additively manufactured components[C]//19th World Conference on Non-Destructive Testing.Germany,2016.
[56] 肖承翔,李海斌.国内外增材制造技术标准现状分析与发展建议[J].中国标准化,2015(3):73-75. XIAO C X,LI H B. Status analysis of domestic and foreign additive manufacturing technical standards and developmental suggestions[J]. China Standardization,2015(3):73-75.
[57] 景绿路.国外增材制造技术标准分析[J].航空标准化与质量,2013(4):44-48. JING L L. Analysis of foreign additive manufacturing technical standards[J]. Aeronautical Standardization and Quality,2013(4):44-48.
[1] 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12.
[2] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[3] 孙博, 夏铭, 张志彬, 梁秀兵, 沈宝龙. 难熔高熵合金性能调控与增材制造[J]. 材料工程, 2020, 48(10): 1-16.
[4] 赵梓钧, 杨新岐, 李胜利, 李冬晓. 工具形状及工艺过程对搅拌摩擦增材成形及缺陷的影响[J]. 材料工程, 2019, 47(9): 84-92.
[5] 陈勇, 陈辉, 姜亦帅, 汪倩, 吴影, 熊俊, 董世运. 高性能金属材料激光增材制造应力变形调控研究现状[J]. 材料工程, 2019, 47(11): 1-10.
[6] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[7] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
[8] 杨慧慧, 杨晶晶, 喻寒琛, 王泽敏, 曾晓雁. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8): 127-133.
[9] 纪宏超, 张雪静, 裴未迟, 李耀刚, 郑镭, 叶晓濛, 陆永浩. 陶瓷3D打印技术及材料研究进展[J]. 材料工程, 2018, 46(7): 19-28.
[10] 郭龙龙, 贺雨田, 鞠录岩, 吴泽兵, 张勇, 吕澜涛, 王文娟. 脉冲TIG增材制造技术研究进展[J]. 材料工程, 2018, 46(12): 10-17.
[11] 黄丹, 朱志华, 耿海滨, 熊江涛, 李京龙, 张赋升. 5A06铝合金TIG丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3): 66-72.
[12] 张学军, 唐思熠, 肇恒跃, 郭绍庆, 李能, 孙兵兵, 陈冰清. 特约3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2): 122-128.
[13] 王忻凯, 邢丽, 徐卫平, 黄春平, 刘奋成. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J]. 材料工程, 2015, 43(5): 8-12.
[14] 宋凯, 康宜华, 张丽攀, 彭旭钊. 钢管磁特性对涡流检测影响的研究进展[J]. 材料工程, 2015, 43(11): 106-112.
[15] 赵志昌, 姚红宇, 曹大树, 孙延春. 应用热波成像技术检测飞机结构隐蔽腐蚀的实验研究[J]. 材料工程, 2012, 0(4): 72-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn