Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (9): 123-128    DOI: 10.11868/j.issn.1001-4381.2016.000500
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
钢/铝添加粉末激光焊接头界面组织与性能
袁江1,2,3,*(), 周惦武3, 陈胜迁1,2, 孙甲尧1, 侯德政1
1 湖南张家界航空工业职业技术学院, 湖南 张家界 427000
2 广东省材料与加工研究院, 广州 510650
3 湖南大学 汽车车身先进设计制造国家重点实验室, 长沙 410082
Interfacial Microstructure and Properties of Steel/Aluminum Powder Additive
Jiang YUAN1,2,3,*(), Dian-wu ZHOU3, Sheng-qian CHEN1,2, Jia-yao SUN1, De-zheng HOU1
1 Zhangjiajie Aviation Industry Vocational Technical College, Zhangjiajie 427000, Hunan, China
2 Guangdong Institute of Materials and Processing, Guangzhou 510650, China
3 State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
全文: PDF(2267 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

基于密度泛函理论的第一性原理,利用层技术构建钢/铝激光焊接的Fe/Al界面模型,研究金属原子XX=Sn,Sr,Zr,Ce,La)置换Fe/Al界面模型中Fe(Al)原子的合金形成热及其体系电子结构。结果表明:Sn,Sr,Ce优先置换Fe/Al界面处的Al原子,而La,Zr优先置换Fe/Al界面处的Fe原子,合金化促进Fe/Al界面电子在不同轨道之间的转移,增强Fe-Al的离子键性能,提高Fe/Al界面结合能力,改善Fe/Al界面的脆性断裂,其中Sn的合金化效果最显著。在此基础上,进行1.4mm厚DC51D+ZF镀锌钢和1.2mm厚6016铝合金试件添加Sn,Zr粉的激光搭接焊实验,结果显示:添加粉末可促进焊接熔池的流动性,改变接头界面成分和显微组织,添加Sn粉激光焊钢/铝接头的抗拉强度327.41MPa,伸长率22.93%,较添加Zr粉和未添加粉末有了明显提高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁江
周惦武
陈胜迁
孙甲尧
侯德政
关键词 钢/铝第一性原理激光搭接焊Fe/Al界面    
Abstract

Based on first-principles density functional theory, the Fe/Al interface model of steel/aluminum laser welding was constructed by layer technique. The Fe/Al interface was studied by metal atom X (X=Sn, Sr, Zr, Ce, La).The results show that Sn, Sr and Ce preferentially displace the Al atoms at the Fe/Al interface, while La and Zr preferentially displace the Fe atoms at the Fe/Al interface. Alloying promotes the transfer of Fe/Al interfacial electrons between different orbits, enhances the ionic bond properties of Fe-Al, improves the Fe/Al interface binding capacity, improves the brittle fracture of Fe/Al interface, and the alloying effect of Sn most notable. On the basis of this, the laser lap welding test of Sn and Zr powder was carried out on 1.4mm thick DC51D+ZF galvanized steel and 1.2mm thick 6016 aluminum alloy specimen. The results show that the addition of powder can promote the flowability of the molten bath and change the composition and microstructure of the joint interface. The tensile strength of the steel/aluminum joint is 327.41MPa and the elongation is 22.93% with the addition of Sn powder, which is obviously improved compared with the addition of Zr powder and without the addition of powder.

Key wordssteel/aluminum    first-principles    laser lap welding    Fe/Al interface
收稿日期: 2016-05-10      出版日期: 2017-09-16
中图分类号:  TG113  
基金资助:国家自然科学基金项目(51674112);广东省科技计划项目(2013B091602002);广东省科技基础条件建设项目(2014B030301012);湖南省教育厅自然科学研究项目(15C1403);广州市重点实验室建设项目(201509010003)
通讯作者: 袁江     E-mail: 57121076@qq.com
作者简介: 袁江(1978-), 男, 副教授, 硕士, 从事车辆轻量化材料计算与设计理论, 联系地址:张家界航空工业职业技术学院航空维修工程系(427000), E-mail:57121076@qq.com
引用本文:   
袁江, 周惦武, 陈胜迁, 孙甲尧, 侯德政. 钢/铝添加粉末激光焊接头界面组织与性能[J]. 材料工程, 2017, 45(9): 123-128.
Jiang YUAN, Dian-wu ZHOU, Sheng-qian CHEN, Jia-yao SUN, De-zheng HOU. Interfacial Microstructure and Properties of Steel/Aluminum Powder Additive. Journal of Materials Engineering, 2017, 45(9): 123-128.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000500      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/123
Fig.1  计算模型
(a)Al(110) 面;(b)Fe(100) 面;(c)Fe/Al界面
Fig.2  Fe/Al添粉激光焊示意图
Phase Source a0/nm B0/GPa
Fe Present 0.2865 152
Exp 0.2866 168
Cal 0.2869 140
Al Present 0.4050 77.6
Exp 0.4032 79.4
Cal 0.3791 81.1
Table 1  Fe和Al相的体性质
Phase(atom) Formation heat/eV
No powder added Sn Sr Zr Ce La
X replace Fe -0.1532 -0.1967 -0.2241 -0.2763 -0.2268 -0.2415
X replace Al -0.1532 -0.2454 -0.2316 -0.2547 -0.2541 -0.2087
Priority replace - Al Al Fe Al Fe
Table 2  X合金化前后Fe/Al界面的合金形成热
Model Species S P Total Charge
Clean Al 17.68 29.36 47.04 0.96
Sn Al 17.76 29.98 47.74 1.21
Sr Al 17.66 29.49 47.15 0.99
Zr Al 17.76 28.88 46.64 1.05
Ce Al 17.66 29.36 47.02 1.02
La Al 17.76 29.79 47.55 1.14
Table 3  X合金化前后Fe/Al界面的Mulliken电子占据数
Fig.3  添加粉前后的钢/铝试样断口形貌
(a)未添加粉;(b)添加Zr粉;(c)添加Sn粉
Fig.4  焊接接头不同区域的线扫描EDS成分分析
(a)钢/铝;(b)钢/锆/铝;(c)钢/锡/铝
1 ZHANG Y Q , FU H R , SUN N Y , et al. Spin hall magnetoresistance in an ultrathin Co2-FeAl system[J]. Journal of Magnetism and Magnetic Materials, 2016, 411 (1): 103- 107.
2 BASAK S , DAS H , PALT K , et al. Characterization of intermetallics in aluminum to zinc coated interstitial free steel joining by pulsed MIG brazing for automotive application[J]. Materials Characterization, 2016, 112 (4): 229- 237.
3 EZAZI M A , YUSOF F , SARHAN A A D . Employment of fiber laser technology to weld austenitic stainless steel 304l with aluminum alloy 5083 using pre-placed activating flux[J]. Materials & Design, 2015, 87 (3): 105- 120.
4 BORISOVA A L , TIMOFEEVA I I , VASIL M A . Structural and phase transformations in Fe-Al intermetallic powders during mechanochemical sintering[J]. Powder Metallurgy and Metal Ceramics, 2015, 54 (7/8): 490- 496.
5 LIU W , MA J , ATABAKI M M , et al. Joining of advanced high-strength steel to AA 6061 alloy by using Fe/Al structural transition joint[J]. Materials & Design, 2015, 68 (5): 146- 157.
6 张秉刚, 何景山, 曾如川. LF2铝合金与Q235钢加入中间Cu层电子束焊接接头组织及形成机理[J]. 焊接学报, 2007, 28 (6): 37- 42.
6 ZHANG B G , HE J S , ZENG R C , et al. Microstructures and formation of EBW joint of aluminum alloy LF2 to steel Q235 with transition metal Cu[J]. Transactions of the China Welding Institution, 2007, 28 (6): 37- 42.
7 MATHIEU A , PONTEVICCI S , WIALA J C , et al. Laser brazing of a steel/aluminium assembly with hot filler wire (88%Al, 12% Si)[J]. Materials Science and Engineering:A, 2006, 19 (28): 435- 436.
8 周惦武, 田伟, 彭利, 等. 镀锌钢/铝添加中间夹层Cu、Pb的激光搭接焊研究[J]. 稀有金属材料与工程, 2014, 43 (5): 1181- 1186.
8 ZHOU D W , TIAN W , PENG L , et al. Laser lap welding of steel and aluminum alloy with Cu, Pb metal sandwich addition[J]. Rare Metal Materials and Engineering, 2014, 43 (5): 1181- 1186.
9 张丽娟, 周惦武, 刘金水, 等. 钢/铝异种金属添加粉末的激光焊接[J]. 中国有色金属学报, 2013, 23 (12): 3401- 3409.
9 ZHANG L J , ZHOU D W , LIU J S , et al. Laser welding of steel/aluminum dissimilar metal with power addition[J]. The Chinese Journal of Nonferrous Metals, 2013, 23 (12): 3401- 3409.
10 周惦武, 李宁宁, 刘元利, 等. 胶层辅助激光焊双相钢/铝合金接头显微组织与力学性能[J]. 中国有色金属学报, 2015, 25 (9): 2381- 2388.
10 ZHOU D W , LI N N , LIU Y L , et al. Microstructure and mechanical properties of dual phase steel/aluminum alloy laser welding with adhesive layer addition[J]. The Chinese Journal of Nonferrous Metals, 2015, 25 (9): 2381- 2388.
11 蒋淑英, 李世春. Al/Fe液-固界面扩散反应层生长动力学分析[J]. 材料工程, 2015, 43 (5): 62- 66.
doi: 10.11868/j.issn.1001-4381.2015.05.011
11 JIANG S Y , LI S C . Growth kinetics analysis on diffusion reaction layer in Al/Fe liquid-solid interface[J]. Journal of Materials Engineering, 2015, 43 (5): 62- 66.
doi: 10.11868/j.issn.1001-4381.2015.05.011
12 彭艳, 周惦武, 徐少华, 等. 钢/铝异种金属激光焊接Fe/Al界面微合金化的第一性原理研究[J]. 稀有金属材料与工程, 2012, (增刊2): 302- 306.
12 PENG Y , ZHOU D W , XU S H , et al. First-principles studies of the effects of microalloy elements on Fe/Al interface for laser lap welding of steel and aluminum[J]. Rare Metal Materials and Engineering, 2012, (Suppl 2): 302- 306.
13 QI Y , HECTOR L G , OOI N , et al. A first principles study of adhesion and adhensive transfer at Al(111)/graphite(001)[J]. Surface Science, 2005, 581 (3): 155- 168.
14 KWAK B W , KIM D K , KIM B S . Effect of FeAl on mechanical properties and consolidation of nanostructured (W, Ti)C by the high frequency induction heating[J]. Materials Transactions, 2015, 56 (11): 1915- 1918.
doi: 10.2320/matertrans.M2015227
15 MECO S , PARDAL G , GANGULY S , et al. Application of laser in seam welding of dissimilar steel to aluminium joints for thick structural components[J]. Optics and Lasers in Engineering, 2015, 67 (4): 22- 30.
16 KANT R , PRAKASH U , AGARWALA V . Wear behaviour of an FeAl intermetallic alloy containing carbon and titanium[J]. Intermetallics, 2015, 61 (5): 21- 26.
17 FORNALCZYK A , CEBULSHI J , DOROTA P . The morphology of corrosion products in FeAl alloys after heat-resistance tests at different temperatures[J]. Solid State Phenomena, 2015, 227 (7): 409- 412.
[1] 李英民, 马鸣檀, 任玉艳, 刘桐宇. 稀土La掺杂Mg2Si的几何结构、弹性性能和电子结构的第一性原理研究[J]. 材料工程, 2020, 48(4): 100-107.
[2] 刘香军, 杨吉春, 贾桂霄, 杨昌桥, 蔡长焜. 金属元素掺杂α-Fe(N)体系的电子结构及力学性能的第一性原理计算[J]. 材料工程, 2019, 47(9): 72-77.
[3] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[4] 董雪, 马爽, 武晓霞, 那日苏. Fe52T2(T=Cr, Mn, Co, Ni)合金bcc与fcc相结构的第一性原理研究[J]. 材料工程, 2019, 47(3): 147-153.
[5] 韦竺施, 崔丽, 贺定勇, 王智慧, 陈俐. 钢/铝异种合金激光深熔焊接头界面金属间化合物的EBSD研究[J]. 材料工程, 2018, 46(7): 113-120.
[6] 靳磊, 崔向中, 王纯, 周国栋, 姜春竹, 李其连, 杨璟. 钇硅酸盐材料力学性能的第一性原理研究[J]. 材料工程, 2017, 45(7): 48-53.
[7] 伏春平. 掺杂单层MoS2电子结构的第一性原理计算[J]. 材料工程, 2016, 44(12): 80-83.
[8] 刘学杰, 魏怀, 任元, 陆峰, 张素慧, 银永杰. 基于第一性原理方法研究基团在CVD金刚石薄膜(001)表面上的生长[J]. 材料工程, 2014, 0(4): 46-52.
[9] 杨硕, 林健, 杨上陆, 雷永平, 孔德凝. 钢/铝CMT接头熔合面积对接头抗剪强度及破坏模式的影响[J]. 材料工程, 2014, 0(4): 34-39.
[10] 张向超, 杨华明, 陶秋芬. TiO2基纳米材料第一性原理计算模拟的研究进展[J]. 材料工程, 2008, 0(1): 76-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn