Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (9): 136-142    DOI: 10.11868/j.issn.1001-4381.2016.000817
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
不同应力幅比加载下2A12铝合金的多轴疲劳性能
陈亚军(), 王先超, 王付胜, 周剑, 吴悦雷
中国民航大学 中欧航空工程师学院, 天津 300300
Multiaxial Fatigue Properties of 2A12 Aluminum Alloy Under Different Stress Amplitude Ratio Loadings
Ya-jun CHEN(), Xian-chao WANG, Fu-sheng WANG, Jian ZHOU, Yue-lei WU
Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China
全文: PDF(3710 KB)   HTML ( 8 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用SDN100/1000电液伺服拉扭复合疲劳试验机对2A12铝合金进行不同应力幅比下的多轴疲劳实验,观察试样断口形貌并结合加载过程中的疲劳循环曲线进行失效机理分析。结果表明:单级加载条件下,随应力幅比的增加合金的疲劳寿命提高,纯扭转条件下断面存在平整的光滑区域,随应力幅比的增加断面划痕减少,并能观察到疲劳条带以及鱼骨状、鳞片状和蜂窝状特殊形貌;不同应力幅比累积路径下,多轴疲劳寿命随一级加载周次变化的规律不同;高-低应力幅比累积路径下,拉压方向一级高应力幅比加载阶段出现明显的循环硬化现象,材料产生"锻炼效应"。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈亚军
王先超
王付胜
周剑
吴悦雷
关键词 2A12铝合金应力幅比多轴疲劳失效机理锻炼效应    
Abstract

The multiaxial fatigue behavior of 2A12 aluminum alloy was studied with SDN100/1000 electro-hydraulic servo tension-torsion fatigue tester under different stress amplitude ratios, the fracture morphology and the fatigue loading curve were observed to study the failure mechanism. The results show that, under the one stage loading condition, the fatigue life prolongs with the stress amplitude ratio increasing. Under pure torsion loading, smooth and even area exists in the fracture surface. As the stress amplitude ratio increases, the number of scratch reduces, the fatigue striation and some special morphology such as the fishbone pattern, scale pattern and honeycomb pattern can be observed; under cumulative paths of different stress amplitude ratios, the variation of multiaxial fatigue life changes with first stage loading cycles; under cumulative paths of high-low stress amplitude ratio, the cycle hardening occurs obviously in the axial direction for the first stage high stress amplitude ratio loading and 2A12 alloy shows training effect.

Key words2A12 aluminum alloy    stress amplitude ratio    multiaxial fatigue    failure mechanism    training effect
收稿日期: 2016-07-06      出版日期: 2017-09-16
中图分类号:  O346.2  
基金资助:国家自然科学基金项目(11502285);中央高校基本科研业务费中国民航大学专项资金项目(3122017112)
通讯作者: 陈亚军     E-mail: 2292598008@qq.com
作者简介: 陈亚军(1976-), 男, 博士, 副教授, 主要研究方向为飞机结构材料失效分析, 联系地址:天津市东丽区津北公路2898号中国民航大学(北院)中欧航空工程师学院(300300), E-mail:2292598008@qq.com
引用本文:   
陈亚军, 王先超, 王付胜, 周剑, 吴悦雷. 不同应力幅比加载下2A12铝合金的多轴疲劳性能[J]. 材料工程, 2017, 45(9): 136-142.
Ya-jun CHEN, Xian-chao WANG, Fu-sheng WANG, Jian ZHOU, Yue-lei WU. Multiaxial Fatigue Properties of 2A12 Aluminum Alloy Under Different Stress Amplitude Ratio Loadings. Journal of Materials Engineering, 2017, 45(9): 136-142.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000817      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/136
Fig.1  疲劳试件尺寸图
Fig.2  2A12铝合金多轴疲劳寿命与应力幅比关系曲线
Fig.3  不同应力幅比下试样断裂外观形貌
(a)λ=0;(b)λ=0.5;(c)λ=1;(d)λ=;(e)λ=2
Fig.4  不同应力幅比下裂纹扩展区微观形貌
(a)λ=0;(b)λ=0.5;(c)λ=1;(d)λ=;(e)λ=2
Fig.5  应力幅比为1时瞬断区蜂窝状形貌
Cumulative path n1/cycle Fatigue life/cycle n1/N1 n2/N2 (n1/N1)+(n2/N2)
2→0.5 2000 19320 0.076 1.001 1.077
4000 20285 0.153 0.941 1.094
6000 21291 0.229 0.884 1.113
8000 24458 0.306 0.951 1.257
10000 27516 0.382 1.012 1.394
0.5→2 2000 26360 0.116 0.932 1.048
4000 23609 0.231 0.750 0.981
6000 19890 0.347 0.531 0.878
8000 14428 0.462 0.246 0.708
10000 12525 0.578 0.097 0.675
Table 1  应力幅比累积实验结果
Fig.6  二级损伤比与一级损伤比关系曲线
(a)2→0.5;(b)0.5→2
Fig.7  疲劳寿命与一级加载周次关系曲线
Fig.8  两类累积方式断口微观形貌
(a)2→0.5, 一级加载2000周次; (b)2→0.5, 一级加载10000周次; (c)0.5→2, 一级加载2000周次; (d)0.5→2, 一级加载10000周次
Fig.9  不同累积方式下位移及扭角幅值随时间变化曲线
1-一级循环2000周次;2-一级循环10000周次
(a)2→0.5拉压方向; (b)2→0.5扭转方向; (c)0.5→2拉压方向; (d)0.5→2扭转方向
1 中国航空材料手册编辑委员会. 中国航空材料手册:第3卷 铝合金 镁合金 钛合金[M]. 北京: 中国标准出版社, 1989.
1 Edit Committee of China Aeronautical Materials Handbook . China aeronautical materials handbook:volume Ⅲ aluminum alloy magnesium alloy titanium alloy[M]. Beijing: Standard Press of China, 1989.
2 STALEY J T , LIU J , HUNT Jr W H . Aluminum alloys for aerostructures[J]. Advanced Materials & Processes, 1997, 152 (4): 17- 20.
3 马楠楠, 陶春虎, 何玉怀, 等. 航空发动机叶片多轴疲劳试验研究进展[J]. 航空材料学报, 2012, 32 (6): 44- 49.
3 MA N N , TAO C H , HE Y H , et al. Research progress of multiaxial fatigue test methods on blades of aviation engine[J]. Journal of Aeronautical Materials, 2012, 32 (6): 44- 49.
4 童第华, 吴学仁, 刘建中, 等. 基于小裂纹理论的铸造钛合金ZTC4疲劳寿命预测[J]. 材料工程, 2015, 43 (6): 60- 65.
4 TONG D H , WU X R , LIU J Z , et al. Fatigue life prediction of cast titanium alloy ZTC4 based on the small crack theory[J]. Journal of Materials Engineering, 2015, 43 (6): 60- 65.
5 丁智平, 陈吉平, 王腾飞, 等. 镍基单晶合金多轴非比例加载低周疲劳研究[J]. 力学学报, 2012, 44 (2): 326- 333.
5 DING Z P , CHEN J P , WANG T F , et al. Study on low cycle fatigue of single crystal Ni-based superalloy under multiaxial non-proportional loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44 (2): 326- 333.
6 田玉杰, 尚德广, 陈宏, 等. 单多轴变幅加载下TC21钛合金疲劳特性[J]. 航空材料学报, 2013, 33 (2): 74- 80.
6 TIAN Y J , SHANG D G , CHEN H , et al. Fatigue properties of TC21 Ti-alloy under uniaxial and multiaxial cyclic variable amplitude loading[J]. Journal of Aeronautical Materials, 2013, 33 (2): 74- 80.
7 赵萍. 航空发动机单晶叶片的多轴低周疲劳研究[D]. 长沙: 中南大学, 2011.
7 ZHAO P. Study on multi-axial low cycle fatigue of aero-engine single crystal blades[D]. Changsha:Central South University, 2011.
8 夏天翔, 姚卫星, 许利蒲. LY12CZ铝合金在多轴两级阶梯谱下疲劳累积损伤理论的对比研究[J]. 航空材料学报, 2014, 34 (3): 86- 92.
8 XIA T X , YAO W X , XU L P . Comparative research on accumulative damage models under multiaxial 2-stage step loading spectra for LY12CZ aluminum alloy[J]. Journal of Aeronautical Materials, 2014, 34 (3): 86- 92.
9 张莉, 唐立强, 付德龙. 基于损伤累积理论的多轴疲劳寿命预测方法[J]. 哈尔滨工业大学学报, 2009, 41 (4): 123- 125.
9 ZHANG L , TANG L Q , FU D L . An evaluation method of fatigue life under multi-axial loading based on damage accumulation theory[J]. Journal of Harbin Institute of Technology, 2009, 41 (4): 123- 125.
10 TAHERI S , VINCENT L , LE-ROUX J C . Classification of metallic alloys for fatigue damage accumulation:a conservative model under strain control for 304 stainless steels[J]. International Journal of Fatigue, 2015, 70, 73- 84.
doi: 10.1016/j.ijfatigue.2014.07.009
11 MANSON S S , HALFORD G R . Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage[J]. International Journal of Fracture, 1981, 17 (4): 169- 192.
12 叶笃毅, 王德俊, 童小燕, 等. 一种基于材料韧性耗散分析的疲劳损伤定量新方法[J]. 实验力学, 1999, 14 (1): 80- 88.
12 YE D Y , WANG D J , TONG X Y , et al. A new approach for studying fatigue damage[J]. Journal of Experimental Mechanics, 1999, 14 (1): 80- 88.
13 KAROLCZUK A , MACHA E . A review of critical plane orientationals in multiaxial fatigue failure criteria of metallic materials[J]. International Journal of Fracture, 2005, 134 (3/4): 267- 304.
14 JIANG Y Y , HERTEL O , VORMWALD M . An experimental evaluation of three critical plane multiaxial fatigue criteria[J]. International Journal of Fatigue, 2007, 29 (8): 1490- 1502.
doi: 10.1016/j.ijfatigue.2006.10.028
15 SONSINO C M , LAGODA T , DEMOFONTI G . Damage accumulation under variable amplitude loading of welded medium-and high-strength steels[J]. International Journal of Fatigue, 2004, 26 (5): 487- 495.
doi: 10.1016/j.ijfatigue.2003.10.001
16 DJEBLI A , AID A , BENDOUBA M , et al. A non-linear energy model of fatigue damage accumulation and its verification for Al-2024 aluminum alloy[J]. International Journal of Non-Linear Mechanics, 2013, 51, 145- 151.
doi: 10.1016/j.ijnonlinmec.2013.01.007
17 ZUO F J , HUANG H Z , ZHU S P , et al. Fatigue life prediction under variable amplitude loading using a non-linear damage accumulation model[J]. International Journal of Damage Mechanics, 2015, 24 (5): 767- 784.
doi: 10.1177/1056789514553042
18 冯胜, 程燕平, 赵亚丽, 等. 线性疲劳损伤累积理论的研究[J]. 哈尔滨工业大学学报, 2003, 35 (5): 608- 610.
18 FENG S , CHENG Y P , ZHAO Y L , et al. Linear fatigue damage cumulation theory[J]. Journal of Harbin Institute of Technology, 2003, 35 (5): 608- 610.
[1] 陈亚军, 徐鹏达, 王付胜, 刘辰辰. 基于DIC的铝合金薄壁缺口件多轴疲劳行为[J]. 材料工程, 2021, 49(1): 168-176.
[2] 卢轶榕, 郑华勇, 陈秀华, 汪海. 三维机织复合材料/钛合金混杂板缝合连接剪切失效机理[J]. 材料工程, 2020, 48(11): 162-169.
[3] 陈亚军, 刘辰辰, 褚玉龙, 宋肖肖. 7075-T651铝合金薄壁管件多轴低周疲劳行为及寿命预测[J]. 材料工程, 2018, 46(10): 60-69.
[4] 陈亚军, 王先超, 王付胜, 刘波. 2A12铝合金的多轴加载疲劳行为[J]. 材料工程, 2017, 45(8): 68-75.
[5] 雍薇, 黄兴民, 张雷, 程乾, 戴光泽. 热浸镀铝球墨铸铁失效机理研究[J]. 材料工程, 2016, 44(8): 77-84.
[6] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[7] 赵凯, 何玉怀, 刘新灵, 陶春虎. 拉弯扭比例加载下50CrVA弹簧钢的多轴疲劳寿命及损伤特征[J]. 材料工程, 2014, 0(12): 99-103.
[8] 杨金丽, 雷永平, 林健, 肖慧. 银含量对跌落条件下无铅焊点疲劳寿命和失效模式的影响[J]. 材料工程, 2013, 0(12): 74-79.
[9] 黄亮亮, 孟惠民, 陈龙. 磁铅石结构六铝酸盐热障涂层的研究现状[J]. 材料工程, 2013, 0(12): 92-99.
[10] 朴钟宇, 徐滨士, 王海斗, 濮春欢. 等离子喷涂铁基涂层的接触疲劳失效机理研究[J]. 材料工程, 2009, 0(11): 69-73.
[11] 李美姮, 张重远, 孙晓峰, 宫声凯, 胡望宇, 管恒荣, 胡壮麒. EB-PVD热障涂层的热循环失效机理[J]. 材料工程, 2002, 0(8): 20-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn