Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (9): 66-71    DOI: 10.11868/j.issn.1001-4381.2016.001225
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
共沉降法制备Y2O3-W连续梯度材料
王诗阳1,2, 陈磊2, 马佩嘉2, 王玉金2, 傅宇东1
1 哈尔滨工程大学 材料科学与化学工程学院, 哈尔滨 150001;
2 哈尔滨工业大学 特种陶瓷研究所, 哈尔滨 150001
Y2O3-W Continuous Graded Materials by Co-sedimentation
WANG Shi-yang1,2, CHEN Lei2, MA Pei-jia2, WANG Yu-jin2, FU Yu-dong1
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
2 Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(3617 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 根据改进的共沉降数学模型,以W颗粒的粒度分布为已知条件,对原始Y2O3粉末进行沉降分级和级配。采用共沉降法和热压烧结工艺制备成分分布指数P分别为1.0,0.7,0.3和0.1的4种Y2O3-W连续梯度材料。结果表明:通过对分级后Y2O3粉末的级配可制备出粒度满足设计要求的Y2O3粉体。通过显微组织观察和硬度测试结果,进一步验证了材料梯度层的连续性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王诗阳
陈磊
马佩嘉
王玉金
傅宇东
关键词 Y2O3-W连续梯度材料共沉降模型级配    
Abstract:The raw Y2O3 powder was classified and graded based on modified co-sedimentation mathematical model,using the size distribution of W particles as the known condition. Y2O3-W continuous graded materials with the composition distribution index P values of 1.0, 0.7, 0.3 and 0.1 were prepared by co-sedimentation and hot-pressing. The results show that the Y2O3 powder consistent with the design requirements can be obtained by graduation method. The gradient continuity of materials can be verified by microstructure observation and hardness testing.
Key wordsY2O3-W    continuous graded material    co-sedimentation model    graduation
收稿日期: 2016-11-16      出版日期: 2017-09-16
中图分类号:  TB331  
通讯作者: 王玉金(1974-),男,教授,博士,从事专业:钨基复合材料、超高温陶瓷材料、复合材料的低温制备及复合材料的热处理等,E-mail:wangyuj@hit.edu.cn     E-mail: wangyuj@hit.edu.cn
引用本文:   
王诗阳, 陈磊, 马佩嘉, 王玉金, 傅宇东. 共沉降法制备Y2O3-W连续梯度材料[J]. 材料工程, 2017, 45(9): 66-71.
WANG Shi-yang, CHEN Lei, MA Pei-jia, WANG Yu-jin, FU Yu-dong. Y2O3-W Continuous Graded Materials by Co-sedimentation. Journal of Materials Engineering, 2017, 45(9): 66-71.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001225      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/66
[1] 徐永东.稀土镁合金组织和性能研究[D].天津:天津大学,2012. XU Y D.Research on microstructure and properties of magnesium alloy with rare earth[D].Tianjin:Tianjin University,2012.
[2] TETSUI T.Development of a TiAl turbocharger for passenger vehicles[J].Materials Science and Engineering:A,2002,329/331:582-588.
[3] CUI R J,TANG X X,GAO M,et al.Microstructure and composition of cast Ti-47Al-2Cr-2Nb alloys produced by yttria crucibles[J].Materials Science and Engineering:A,2012,541:14-21.
[4] BEWLAY B P,JACKSON M R,ZHAO J C,et al.Ultrahigh-temperature Nb-silicide-based composites[J].MRS Bulletin,2003,28(9):646-653.
[5] GUAN P.Directionally solidified microstructure of an ultra-high temperature Nb-Si-Ti-Hf-Cr-Al alloy[J].Acta Metallurgica Sinica,2009,17(4):450-454.
[6] 马国印.镍和镍合金耐腐蚀性分析[J].化工装备技术,2007,28(1):71-74. MA G Y.Corrosion resistance analysis of nickel and nickel alloy[J].Chemical Equipment Technology,2007,28(1):71-74.
[7] 沈海丰.Y2O3-W功能梯度材料的设计及抗热震性能[D].哈尔滨:哈尔滨工业大学,2013. SHEN H F.Design and thermal shock resistance of Y2O2-W functionally graded materials[D].Harbin:Harbin Institute of Technology,2013.
[8] CUI R J,GAO M,ZHANG H,et al.Interactions between TiAl alloys and yttria refractory material in casting process[J].Journal of Materials Processing Technology,2010,210(9):1190-1196.
[9] KUANG J P,HARDING R A,CAMPBELL J.Investigation into refractories as crucible and mould materials for melting and casting γ-TiAl alloys[J].Materials Science and Technology,2000,16(9):1007-1016.
[10] TETSUI T,KOBAYASHI T,KISHIMOTO A,et al.Structural optimization of an yttria crucible for melting TiAl alloy[J].Intermetallics,2012,20(1):16-23.
[11] RICCARDI B,MONTANARI R,CASADEI M,et al.Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates[J].Journal of Nuclear Materials,2006,352(8):29-35.
[12] CHO G S,CHOE K H.Characterization of plasma-sprayed tungsten coating on graphite with intermediate layers[J].Surface & Coatings Technology,2012,209(18):131-136.
[13] JUNG Y G,PARK S W,CHOI S C.Effect of CH4 and H2 on CVD of SiC and TiC for possible fabrication of SiC/TiC/C FGM[J].Material Letters,1997,30(5/6):339-345.
[14] ZHOU Z J,SONG S X,DU J,et al.Performance of W/Cu FGM based plasma facing components under high heat load test[J].Journal of Nuclear Materials,2007,363(12):1309-1314.
[15] JIN X,WU L,SUN Y,et al.Microstructure and mechanical properties of ZrO2/NiCr functionally graded materials[J].Materials Science and Engineering:A,2009,509(1):63-68.
[16] TSUKAMOTO H.Microstructure and indentation properties of ZrO2/Ti functionally graded materials fabricated by spark plasma sintering[J].Materials Science and Engineering:A,2015,640:338-349.
[17] OSHKOUR A A,PRAMANIK S,MEHRALI M,et al.Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite[J].Journal of the Mechanical Behavior of Biomedical Materials,2015,49:321-331.
[18] SIMONET J,KAPELSKI G,BOUVARD D.A sedimentation process for the fabrication of solid oxide fuel cell cathodes with graded composition[J].Journal of the European Ceramic Society,2007,27(10):3113-3116.
[19] YANG Z M,ZHOU Z G,ZHANG L M.Characteristics of residual stress in Mo-Ti functionally graded material with a continuous change of composition[J].Materials Science and Engineering:A,2003,358(1/2):214-218.
[20] YANG Z M,TIAN F,ZHANG L M.Theoretical study on two sedimentation processes used to form functionally graded materials[J].Journal of Materials Science Letters,2003,22(10):739-741.
[21] YANG Z M,ZHANG L M,SHEN Q.Development of mathematical model on preparation of functionally graded material by co-sedimentation[J].Journal of Materials Science & Technology,2001,17(2):275-277.
[22] YANG Z M,ZHOU Z G,ZHANG L M.Characteristics of residual stress in Mo-Ti functionally graded material with a continuous change of composition[J].Materials Science and Engineering:A,2003,358(1):214-218.
[23] YANG Z M,ZHANG L M,TIAN F,et al.Formation and control of Ti-Mo FGM with continuous transitional composition[J].Ceramic Transactions (USA),2001,114:365-371.
[24] MILLER D P,LANNUTTIA J J.Fabrication and properties of functionally graded NiAl/Al2O3 composites[J].Materials Research Society,1993,8(8):2004-2013.
[25] ALLEN T.颗粒大小测定[M].北京:中国建筑工业出版社,1984:112-154.
[1] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[2] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[3] 山泉, 张亚峰, 张哲轩, 李祖来, 蒋业华, 王鹏飞. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2): 115-121.
[4] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[5] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
[6] 王剑桥, 雷卫宁, 薛子明, 钱海峰, 刘维桥. 石墨烯增强金属基复合材料的制备及应用研究进展[J]. 材料工程, 2018, 46(12): 18-27.
[7] 王鹏, 张瑞英, 韩小伟, 刘天丽, 杨森. 不同压制压力制备的Al-TiO2-C细化剂对ZL101合金细化效果的影响[J]. 材料工程, 2018, 46(8): 84-90.
[8] 吴迎飞, 陈华辉, 李海存, 张婉婷. 铁基复合材料中碳化钨颗粒的溶解析出行为[J]. 材料工程, 2018, 46(8): 98-105.
[9] 包昂, 卢德宏. WCp/高锰钢基复合材料及复合结构的冲击磨损性能[J]. 材料工程, 2018, 46(4): 91-98.
[10] 魏红阳, 常萌蕾, 陈东初, 王梅丰, 叶秀芳. 太阳能吸收AAO复合氧化膜的制备与性能[J]. 材料工程, 2017, 45(11): 42-48.
[11] 郭鲤, 蔡晓兰, 李铮, 周蕾, 彭刚, 张文忠, 王子阳. 高能球磨法制备高性能均一分散CNTs/Al5083复合材料[J]. 材料工程, 2017, 45(11): 122-128.
[12] 韩小伟, 张瑞英, 王鹏. Al-TiO2-C晶粒细化剂对工业纯铝细化效果的影响[J]. 材料工程, 2017, 45(10): 65-70.
[13] 叶伟杰, 陈楷航, 蔡少龄, 陈利科, 钟同苏, 王小英. 纳米银的合成及其抗菌应用研究进展[J]. 材料工程, 2017, 45(9): 22-30.
[14] 杨旭东, 陈亚军, 师春生, 赵乃勤. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45(9): 93-100.
[15] 熊俊杰, 闫洪. Al-Ti体系原位合成Al3Ti/ADC12复合材料[J]. 材料工程, 2017, 45(8): 30-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn