Y2O3-W Continuous Graded Materials by Co-sedimentation
Shi-yang WANG1,2, Lei CHEN2, Pei-jia MA2, Yu-jin WANG2,*(), Yu-dong FU1
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China 2 Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001, China
The raw Y2O3 powder was classified and graded based on modified co-sedimentation mathematical model, using the size distribution of W particles as the known condition. Y2O3-W continuous graded materials with the composition distribution index P values of 1.0, 0.7, 0.3 and 0.1 were prepared by co-sedimentation and hot-pressing. The results show that the Y2O3 powder consistent with the design requirements can be obtained by graduation method. The gradient continuity of materials can be verified by microstructure observation and hardness testing.
XU Y D.Research on microstructure and properties of magnesium alloy with rare earth[D].Tianjin:Tianjin University, 2012.
2
TETSUI T . Development of a TiAl turbocharger for passenger vehicles[J]. Materials Science and Engineering:A, 2002, 329/331, 582- 588.
doi: 10.1016/S0921-5093(01)01584-2
3
CUI R J , TANG X X , GAO M , et al. Microstructure and composition of cast Ti-47Al-2Cr-2Nb alloys produced by yttria crucibles[J]. Materials Science and Engineering:A, 2012, 541, 14- 21.
doi: 10.1016/j.msea.2012.01.099
4
BEWLAY B P , JACKSON M R , ZHAO J C , et al. Ultrahigh-temperature Nb-silicide-based composites[J]. MRS Bulletin, 2003, 28 (9): 646- 653.
doi: 10.1557/mrs2003.192
5
GUAN P . Directionally solidified microstructure of an ultra-high temperature Nb-Si-Ti-Hf-Cr-Al alloy[J]. Acta Metallurgica Sinica, 2009, 17 (4): 450- 454.
SHEN H F.Design and thermal shock resistance of Y2O2-W functionally graded materials[D].Harbin:Harbin Institute of Technology, 2013.
8
CUI R J , GAO M , ZHANG H , et al. Interactions between TiAl alloys and yttria refractory material in casting process[J]. Journal of Materials Processing Technology, 2010, 210 (9): 1190- 1196.
doi: 10.1016/j.jmatprotec.2010.03.003
9
KUANG J P , HARDING R A , CAMPBELL J . Investigation into refractories as crucible and mould materials for melting and casting γ-TiAl alloys[J]. Materials Science and Technology, 2000, 16 (9): 1007- 1016.
doi: 10.1179/026708300101508964
10
TETSUI T , KOBAYASHI T , KISHIMOTO A , et al. Structural optimization of an yttria crucible for melting TiAl alloy[J]. Intermetallics, 2012, 20 (1): 16- 23.
doi: 10.1016/j.intermet.2011.08.026
11
RICCARDI B , MONTANARI R , CASADEI M , et al. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates[J]. Journal of Nuclear Materials, 2006, 352 (8): 29- 35.
12
CHO G S , CHOE K H . Characterization of plasma-sprayed tungsten coating on graphite with intermediate layers[J]. Surface & Coatings Technology, 2012, 209 (18): 131- 136.
13
JUNG Y G , PARK S W , CHOI S C . Effect of CH4 and H2 on CVD of SiC and TiC for possible fabrication of SiC/TiC/C FGM[J]. Material Letters, 1997, 30 (5/6): 339- 345.
14
ZHOU Z J , SONG S X , DU J , et al. Performance of W/Cu FGM based plasma facing components under high heat load test[J]. Journal of Nuclear Materials, 2007, 363 (12): 1309- 1314.
15
JIN X , WU L , SUN Y , et al. Microstructure and mechanical properties of ZrO2/NiCr functionally graded materials[J]. Materials Science and Engineering:A, 2009, 509 (1): 63- 68.
16
TSUKAMOTO H . Microstructure and indentation properties of ZrO2/Ti functionally graded materials fabricated by spark plasma sintering[J]. Materials Science and Engineering:A, 2015, 640, 338- 349.
doi: 10.1016/j.msea.2015.06.005
17
OSHKOUR A A , PRAMANIK S , MEHRALI M , et al. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 49, 321- 331.
doi: 10.1016/j.jmbbm.2015.05.020
18
SIMONET J , KAPELSKI G , BOUVARD D . A sedimentation process for the fabrication of solid oxide fuel cell cathodes with graded composition[J]. Journal of the European Ceramic Society, 2007, 27 (10): 3113- 3116.
doi: 10.1016/j.jeurceramsoc.2006.11.075
19
YANG Z M , ZHOU Z G , ZHANG L M . Characteristics of residual stress in Mo-Ti functionally graded material with a continuous change of composition[J]. Materials Science and Engineering:A, 2003, 358 (1/2): 214- 218.
20
YANG Z M , TIAN F , ZHANG L M . Theoretical study on two sedimentation processes used to form functionally graded materials[J]. Journal of Materials Science Letters, 2003, 22 (10): 739- 741.
doi: 10.1023/A:1023799825814
21
YANG Z M , ZHANG L M , SHEN Q . Development of mathematical model on preparation of functionally graded material by co-sedimentation[J]. Journal of Materials Science & Technology, 2001, 17 (2): 275- 277.
22
YANG Z M , ZHOU Z G , ZHANG L M . Characteristics of residual stress in Mo-Ti functionally graded material with a continuous change of composition[J]. Materials Science and Engineering:A, 2003, 358 (1): 214- 218.
23
YANG Z M , ZHANG L M , TIAN F , et al. Formation and control of Ti-Mo FGM with continuous transitional composition[J]. Ceramic Transactions (USA), 2001, 114, 365- 371.
24
MILLER D P , LANNUTTIA J J . Fabrication and properties of functionally graded NiAl/Al2O3 composites[J]. Materials Research Society, 1993, 8 (8): 2004- 2013.
doi: 10.1557/JMR.1993.2004