Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (10): 23-31    DOI: 10.11868/j.issn.1001-4381.2017.000433
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
FV520B沉淀硬化不锈钢的MAG堆焊再制造力学特性
柳建1, 朱胜2, 蔡志海1, 张平1, 刘军1, 秦航1, 仝永刚1
1 装甲兵工程学院 机械产品再制造国家工程研究中心, 北京 100072;
2 装甲兵工程学院 装备再制造技术国防科技重点实验室, 北京 100072
Mechanical Characteristic of Remanufacturing of FV520B Precipitation Hardening Stainless Steel Using MAG Surfacing Deposition
LIU Jian1, ZHU Sheng2, CAI Zhi-hai1, ZHANG Ping1, LIU Jun1, QIN Hang1, TONG Yong-gang1
1 National Engineering Research Center for Mechanical Product Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China;
2 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
全文: PDF(5473 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用堆焊熔敷成形技术进行FV520B沉淀硬化不锈钢再制造实验,并通过与基材相应性能进行对比分析,研究FV520B不锈钢MAG堆焊再制造成形层力学特性。结果表明:FV520B不锈钢MAG堆焊再制造成形层具有高强度和高硬度特性,其抗拉强度达到1195MPa,超过基材的1092MPa,屈服强度和硬度平均值分别为776MPa和336HV,与基材的859MPa和353HV相近;但是,再制造成形层的静拉伸伸长率与冲击韧性相对较低,分别为8.72%和61J/cm2,与基材的19.67%和144J/cm2相比差距较大。试样断口和组织分析表明,MAG堆焊再制造成形层的快冷非平衡结晶板条马氏体+NbC,MoC,M23C6等碳化物沉淀强化相组织是其具有高强度和高硬度力学特性的根本原因。不过,缺少时效处理和Cu元素强化相作用,以及夹杂脆性相和大尺寸球形颗粒与基体间的弱界面作用会恶化材料受力时的变形能力,容易引起应力集中并开裂,是再制造成形层具有较低静拉伸伸长率和较差冲击韧性的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柳建
朱胜
蔡志海
张平
刘军
秦航
仝永刚
关键词 FV520B沉淀硬化不锈钢再制造MAG堆焊力学性能    
Abstract:Surfacing deposition forming method was adopted to carry out remanufacturing experiment of FV520B precipitation hardening stainless steel. Then the mechanical property characteristic of the remanufacturing layer was tested and studied, contrasted with the corresponding property of substrate. The results show that the remanufacturing layer, formed with MAG surfacing of FV520B precipitation hardening stainless steel has mechanical characteristic with high strength and hardness, the tensile strength reaches 1195MPa, exceeds 1092MPa of substrate, yield strength is 776MPa and average hardness is 336HV, is close to the corresponding property of substrate which is 859MPa and 353HV respectively; however, the elongation and impact toughness of the remanufacturing layer is merely 8.92% and 61J/cm2 respectively, it has a large gap with the corresponding property 19.72% and 144J/cm2 respectively of substrate. Fracture and microstructure analysis on specimens shows that the microstructure of remanufacturing layer is fast cooling non-equilibrium crystallized lath martensite, and carbide precipitated strengthening phase such as NbC, MoC, M23C6,etc, which is the reason that remanufacturing layer has high strength and high hardness. But as lack of aging treatment and Cu strengthening phase, and the weak interface between contaminating brittle phase or large size spherical particles and substrate will deteriorate the deformability and induce stress concentration and cracking when the material is load-carrying, and is the main reason of the remanufacturing layer having lower static tensile elongation and impact toughness.
Key wordsFV520B precipitation hardening stainless steel    remanufacturing    MAG surfacing    mechanical property
收稿日期: 2017-04-15      出版日期: 2017-10-18
中图分类号:  TG117.1  
  TG434  
通讯作者: 朱胜(1964-),男,教授,博导,主要研究方向为机械工程和再制造,联系地址:北京市丰台区杜家坎21号装甲兵工程学院装备再制造技术国防科技重点实验室(100072),E-mail:zusg@sohu.com550123310@qq.com     E-mail: zusg@sohu.com550123310@qq.com
引用本文:   
柳建, 朱胜, 蔡志海, 张平, 刘军, 秦航, 仝永刚. FV520B沉淀硬化不锈钢的MAG堆焊再制造力学特性[J]. 材料工程, 2017, 45(10): 23-31.
LIU Jian, ZHU Sheng, CAI Zhi-hai, ZHANG Ping, LIU Jun, QIN Hang, TONG Yong-gang. Mechanical Characteristic of Remanufacturing of FV520B Precipitation Hardening Stainless Steel Using MAG Surfacing Deposition. Journal of Materials Engineering, 2017, 45(10): 23-31.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000433      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/23
[1] 李荣朋. 铸造马氏体沉淀硬化不锈钢叶轮材料及工艺研究[D]. 沈阳:沈阳工业大学, 2006. LI R P. The investigation of casting martensite precipitation hardening stainless steel impeller materials and technics[D]. Shenyang:Shenyang University of Technology, 2006.
[2] 任维彬, 董世运, 徐滨士, 等. FV520(B)钢叶片模拟件激光再制造工艺优化与修复[J]. 材料工程, 2015, 43(1):6-12. REN W B, DONG S Y, XU B S, et al. Process optimization and forming repair of laser remanufacture of FV520(B) steel blade simulator[J]. Journal of Materials Engineering, 2015, 43(1):6-12.
[3] 陈金明, 霍海燕, 胡创国. FV520B钢高速铣削力试验研究[J].风机技术, 2014(5):58-61. CHEN J M, HUO H Y, HU C G. Experimental study on milling force of high-speed milling FV520B steel[J]. Blower Fan Technology, 2014(5):58-61.
[4] 李宏坤, 赵鹏仕, 李精忠, 等. FV520B不锈钢铣削稳定叶瓣图的构建及实验[J].振动、测试与诊断, 2015,35(4):722-726. LI H K, ZHAO P S, LI J Z, et al. Construct and experimentation on milling stability lobes of FV520B stainless steel[J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(4):722-726.
[5] 赵磊, 胡创国, 武导侠, 等. FV520B钢铣削参数优化及振动试验研究[J].机床与液压, 2013, 41(1):54-57. ZHAO L, HU C G, WU D X, et al. Experimental study on milling parameter optimization and vibration of high-speed milling FV520B steel[J]. Machine Tool & Hydraulics, 2013, 41(1):54-57.
[6] 陈丰君, 杜晓东, 郎经纬, 等. FV(520)B不锈钢高温高压条件下硫化腐蚀机理[J]. 材料热处理学报, 2015, 36(6):211-215. CHEN F J, DU X D, LANG J W, et al. Sulfidation mechanism of FV(520)B stainless steel in high temperature and high pressure environment[J]. Transactions of Materials and Heat Treatment, 2015, 36(6):211-215.
[7] 孙蛟, 陈颂英, 丁进, 等. FV520B钢在H2S/CO2环境下的应力腐蚀[J]. 东北大学学报(自然科学版), 2015, 36(12):1790-1794. SUN J, CHEN S Y, DING J, et al. Stress corrosion behavior of FV520B steel in H2S/CO2 environment[J]. Journal of Northeastern University(Natural Science Edition), 2015, 36(12):1790-1794.
[8] 王光存, 李剑峰, 贾秀杰, 等. 金属材料FV520B冲蚀模型的建立与验证[J]. 哈尔滨工程大学学报, 2015,36(5):714-719. WANG G C, LI J F, JIA X J, et al. Establishment and verification of an erosion model for metal materials FV520B[J]. Journal of Harbin Engineering University, 2015,36(5):714-719.
[9] CHU Q L, ZHANG M, LI J H. Failure analysis of impeller made of FV520B martensitic precipitated hardening stainless steel[J]. Engineering Failure Analysis, 2013,34:501-510.
[10] WANG J L, ZHANG Y L, LIU S J, et al. Competitive giga-fatigue life analysis owing to surface defect and internal inclusion for FV520B-I[J]. International Journal of Fatigue, 2016, 87:203-209.
[11] LIU C, LIU S J, GAO S B, et al. Fatigue life assessment of the centrifugal compressor impeller with cracks based on the properties of FV520B[J]. Engineering Failure Analysis, 2016,66:177-186.
[12] 郭强, 郭杏林, 樊俊铃,等. 基于固有耗散的FV520B钢高周疲劳性能研究[J]. 金属学报, 2015, 51(4):400-406. GUO Q, GUO X L, FAN J L, et al. Research on high-cycle fatigue behavior of FV520B steel based on intrinsic dissipation[J]. Acta Metallurgica Sinica, 2015, 51(4):400-406.
[13] 郝胜智, 赵丽敏, 王慧慧, 等. 强流脉冲电子束FV520B钢表面改性组织及耐腐蚀性能[J]. 真空科学与技术学报, 2015,35(12):1519-1523. HAO S Z,ZHAO L M, WANG H H, et al. Surface modification of FV520B steel by high current pulsed electron beam[J]. Chinese Journal of Vacuum Science and Technology, 2015,35(12):1519-1523.
[14] 包翠敏, 庄春瑜, 陈蕊, 等. 压缩机叶轮用不锈钢化学镀Ni-P工艺及镀层性能[J]. 材料保护, 2015, 48(6):7-12. BAO C M, ZHUANG C Y, CHEN R, et al. Process for nickel-phosphorous electroplating of stainless steel used for impeller channels of compressor and wear resistance and corrosion resistance of the coating[J]. Journal of Materials Protection, 2015, 48(6):7-12.
[15] 韩增福, 张飞雄. 离心叶轮用材料真空钎焊工艺研究[J].通用机械, 2003(7):31-33. HAN Z F, ZHANG F X. Study on the process of vacuum brazing of FV520B material prepared for radial impeller[J].General Machinery, 2003(7):31-33.
[16] 张敏, 李岩, 李继红, 等.一种风机转子用FV520(B)不锈钢碱性焊条的研制[J].中国机械工程, 2011,22(22):2749-2753. ZHANG M, LI Y, LI J H, et al. Development of one kind of FV520(B) stainless steel matching with alkalinity welding electrode used on fan impeller[J].China Mechanical Engineering, 2011,22(22):2749-2753.
[17] 张敏, 刘明志, 张明, 等. 奥氏体化合金元素Mn和Ni对FV520B焊缝组织与力学性能的影响[J].材料工程, 2016,44(3):40-45. ZHANG M, LIU M Z, ZHANG M, et al. Microstructure and mechanical properties of FV520B affected by austenitizing elements Mn and Ni[J]. Journal of Materials Engineering, 2016,44(3):40-45.
[18] 牛靖, 董俊明, 薛锦, 等. FV520(B)与18CrMnMoV焊接接头力学性能分析[J].焊接学报, 2006, 27(12):101-105. NIU J, DONG J M, XUE J, et al. Analysis of mechanical properties of FV520(B) stainless steel and 18CrMnMoV steel welded joints[J]. Transactions of the China Welding Institution, 2006, 27(12):101-105.
[19] 周倩青, 翟玉春. 高强高韧FV520B马氏体钢的时效工艺优化[J].金属学报, 2009, 45(10):1249-1254. ZHOU Q Q, ZHAI Y C. Aging process optimization for a high strength and toughness of FV520B martensitic steel[J]. Acta Metallurgica Sinica,2009, 45(10):1249-1254.
[20] 许文博, 石伟, 张欣. 马氏体型沉淀硬化不锈钢失效过程的组织转变[J].材料热处理学报,2013,34(11):139-143. XU W B, SHI W, ZHANG X. Microstructural transformation of martensite precipitation hardening stainless steel during aging process[J]. Transactions of Materials and Heat Treatment,2013,34(11):139-143.
[21] 樊俊铃, 郭杏林, 吴承伟, 等. 热处理对FV520B钢疲劳性能的影响[J]. 材料研究学报, 2012, 26(1):61-67. FAN J L, GUO X L, WU C W, et al. Heat treatment on fatigue property of FV520B steel[J]. Journal of Materials Research, 2012, 26(1):61-67.
[22] 李法双,李方义,贾秀杰, 等. FV520B激光熔覆FeCr合金的性能分析[J].工具技术, 2015, 49(10):55-58. LI F S, LI F Y, JIA X J, et al. Performance analysis of FeCr repaired coating on FV520B steel by laser cladding[J].Tool Technology, 2015, 49(10):55-58.
[23] 柳建. 基于弧焊机器人的GMAW堆焊熔敷无支撑成形研究[D]. 北京:装甲兵工程学院, 2011. LIU J. Study of GMAW surface forming with non-support structure based on arc weld robot[D]. Beijing:Academy of Armored Forces Engineering,2011.
[24] GASEM Z M. Fatigue crack growth behavior in powder-metal-lurgy 6061 aluminum alloy reinforced with submicron Al2O3 particulates[J]. Composites Part B, 2012,43(8):3020-3025.
[25] 李微, 陈振华, 陈鼎, 等. 喷射沉积SiCp/Al-7Si复合材料的疲劳裂纹扩展[J].金属学报, 2011,47(1):102-108. LI W, CHEN Z H, CHEN D, et al. Growth behavior of fatigue crack in spray-formed SiCp/Al-7Si composite[J].Acta Metallurgica Sinica, 2011,47(1):102-108.
[26] 贾凤翔, 侯若明, 贾晓滨. 不锈钢性能及选用[M]. 北京:化学工业出版社, 2013. JIA F X, HOU R M, JIA X B. Property and selection of stainless steel[M]. Beijing:Chemical Industry Press, 2013.
[27] 牛靖, 董俊明, 薛锦. 沉淀硬化不锈钢FV520(B)的析出硬化及韧性[J]. 机械工程学报, 2007, 43(12):78-83. NIU J, DONG J M, XUE J. Precipitation-hardening and toughness of precipitation-hardening stainless steel FV520(B)[J]. Chinese Journal of Mechanical Engineering, 2007, 43(12):78-83.
[28] HATTESTRAND P, NILSSONA J O, STILLER K, et al. Precipitation hardening in a 12%Cr-9%Ni-4%Mo-2%Cu stainless steel[J]. Acta Materialia, 2004, 52(4):1023-1037.
[29] 张春铭. 含铜钢的研究[J].钢铁, 1964(1):41-43. ZHANG C M. Research of copper-bearing steel[J]. Iron and Steel, 1964(1):41-43.
[30] 尹桂全, 杨才福, 吕忆农, 等. 含铜钢的时效硬化[J].钢铁研究学报, 2004,16(4):61-63. YIN G Q, YANG C F, LV Y N, et al. Age hardening of ultra-low-carbon steel bearing copper[J]. Journal of Iron and Steel Research, 2004,16(4):61-63.
[31] 李能, 郭绍庆, 周标, 等. 时效处理对0Cr15Ni5Cu4Nb钢焊接接头力学性能的影响[J].航空材料学报,2012, 32(4):38-43. LI N, GUO S Q, ZHOU B, et al. Influence of aging heat treatment to mechanical properties of joints welded by 0Cr15Ni5Cu4Nb steel[J]. Journal of Aeronautical Materials, 2012, 32(4):38-43.
[32] 张永权,刘天军,杨才福.铜的时效行为及其对06NiCuCrMoNb钢力学性能的影响[J]. 钢铁研究学报, 1998,10(4):41-45. ZHANG Y Q, LIU T J, YANG C F. Age-hardening behavior of Cu and its effect on mechanical properties of 06NiCuCrMoNb steel[J].Journal of Iron and Steel Research,1998,10(4):41-45.
[33] 马涛, 杨桂宇, 邓美乐, 等. 含铜钢的研究现状及展望[J]. 热加工工艺, 2017,46(2):36-39. MA T, YANG G Y, DENG M L, et al. Research development status of copper-bearing steel[J]. Hot Working, 2017,46(2):36-39.
[34] 李娜. 铜在钢中的作用综述[J]. 辽宁科技大学学报, 2011,34(2):157-162. LI N. Study on effects of copper in steel[J]. Journal of University of Science and Technology Liaoning, 2011,34(2):157-162.
[35] CHEN Y Q, PAN S P, ZHOU M Z, et al. Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and growth behavior of 2524-T3 Al alloy[J].Materials Science and Engineering:A,2013, 580:150-158.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[15] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn