Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (10): 32-38    DOI: 10.11868/j.issn.1001-4381.2015.001234
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响
王文(), 李天麒, 乔柯, 徐瑞琦, 王快社
西安建筑科技大学 冶金工程学院 材料加工实验室, 西安 710055
Effect of Rotation Rate on Microstructure and Properties of Underwater Friction Stir Welded 7A04-T6 Aluminum Alloy
Wen WANG(), Tian-qi LI, Ke QIAO, Rui-qi XU, Kuai-she WANG
Laboratory of Materials Processing, School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
全文: PDF(12771 KB)   HTML ( 27 )  
输出: BibTeX | EndNote (RIS)      
摘要 

对7A04-T6铝合金板进行水下搅拌摩擦焊接(FSW),研究转速对水下FSW接头组织和力学性能的影响。结果表明:水下FSW接头的硬度最小值均位于热机械影响区。高转速条件下(950r/min)接头的硬度分布呈现"W"形,焊核区平均硬度值高于低转速条件下(475,600,750r/min)接头的硬度值。当焊速恒定为235mm/min,转速从475r/min提高到750r/min时,接头焊核区的析出相随转速的增大逐渐粗化,接头抗拉强度系数从89.71%降低到82.33%;当转速升高到950r/min时,析出相发生固溶时效,呈现细小弥散的分布特征,接头的强度系数提高到89.04%。接头具有较高的应变硬化能力,塑性伸长率较高。水下FSW接头的拉伸断口均呈现微孔聚合和解理混合断裂特征。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王文
李天麒
乔柯
徐瑞琦
王快社
关键词 水下搅拌摩擦焊接7A04铝合金转速组织力学性能    
Abstract

Underwater friction stir welding (FSW) on 7A04-T6 aluminum alloy plates was carried out, and the effect of rotation rate on microstructure and mechanical properties of joints was investigated. The results show that the minimum hardness of underwater FSW joints is located in the thermo-mechanically affected zone. The hardness of welded joints at the high rotation rate of 950r/min exhibits W-shaped distribution, and the average hardness value in the nugget zone is higher than that of welded joints at the low rotation rate of 475, 600, 750r/min. When the rotation rate increases from 475r/min to 750r/min with a constant welding speed of 235mm/min, the precipitated phases in the nugget zone gradually become coarse, and the ultimate tensile strength coefficient of the joint decreases from 89.71% to 82.33%; when rotation rate increases to 950r/min, the precipitated phases dissolve into aluminum matrix during welding, and age after welding. This produces the fine and homogeneous dispersed phases, which results in an increase of the strength coefficient to 89.04% and a certain enhancement of strain hardening capacity and elongation for the joints. All the tensile fracture surfaces exhibit the mixed characteristics of microporous polymerization and cleavage fracture.

Key wordsunderwater friction stir welding    7A04 aluminum alloy    rotation rate    microstructure    mechanical property
收稿日期: 2015-10-14      出版日期: 2017-10-18
中图分类号:  TG457.1  
基金资助:国家自然科学基金项目(51404180);国家自然科学基金项目(51274161)
通讯作者: 王文     E-mail: wangwen2016@126.com
作者简介: 王文(1985-), 男, 工程师, 博士研究生, 从事搅拌摩擦焊接及加工研究, 联系地址:陕西省西安市碑林区雁塔路13号西安建筑科技大学冶金工程学院材料加工实验室(710055), E-mail:wangwen2016@126.com
引用本文:   
王文, 李天麒, 乔柯, 徐瑞琦, 王快社. 转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响[J]. 材料工程, 2017, 45(10): 32-38.
Wen WANG, Tian-qi LI, Ke QIAO, Rui-qi XU, Kuai-she WANG. Effect of Rotation Rate on Microstructure and Properties of Underwater Friction Stir Welded 7A04-T6 Aluminum Alloy. Journal of Materials Engineering, 2017, 45(10): 32-38.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001234      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/32
Fig.1  水下搅拌摩擦焊接示意图
Fig.2  7A04-T6铝合金水下FSW接头横截面宏观形貌
Fig.3  母材和不同转速下NZ微观组织
(a),(b)母材;(c)475r/min;(d)600r/min;(e)750r/min;(f)950r/min
Fig.4  不同转速下水下FSW接头横截面显微硬度分布
Fig.5  不同转速下水下FSW接头拉伸性能
Fig.6  不同转速下水下FSW接头的加工硬化率-真应变曲线
Fig.7  不同转速下水下FSW接头的拉伸断口形貌
(a)475r/min;(b)600r/min;(c)750r/min;(d)950r/min
1 MISHRA R S , MA Z Y . Friction stir welding and processing[J]. Materials Science and Engineering:R:Reports, 2005, 50 (1): 1- 78.
2 THOMAS W M, NEEDLHAM J C, DAWES C J, et al. Friction stir butt welding:9125978.8[P]. 1991-12-06.
3 WANG W , WANG K S , GUO Q , et al. Effect of friction stir processing on microstructure and mechanical properties of cast AZ31 magnesium alloy[J]. Rare Metal Materials and Engineering, 2012, 41 (9): 1522- 1526.
doi: 10.1016/S1875-5372(13)60004-1
4 WANG K S , WU J L , WANG W , et al. Underwater friction stir welding of ultrafine grained 2017 aluminum alloy[J]. Journal of Central South University, 2012, 19 (8): 2081- 2085.
doi: 10.1007/s11771-012-1248-2
5 李继忠, 马正斌, 董春林, 等. 异种铝合金搅拌摩擦焊材料流动行为研究[J]. 材料工程, 2014, (6): 1- 4.
doi: 10.11868/j.issn.1001-4381.2014.06.001
5 LI J Z , MA Z B , DONG C L , et al. Material flowing behaviors of friction stir welding by dissimilar aluminum alloys[J]. Journal of Materials Engineering, 2014, (6): 1- 4.
doi: 10.11868/j.issn.1001-4381.2014.06.001
6 王昌盛, 熊江涛, 李京龙, 等. 2024铝合金搅拌摩擦焊焊缝区疲劳过程中的温度演变[J]. 材料工程, 2015, 43 (9): 53- 59.
doi: 10.11868/j.issn.1001-4381.2015.09.009
6 WANG C S , XIONG J T , LI J L , et al. Temperature evolution in fatigue test of 2024 aluminum alloy weld fabricated by friction stir welding[J]. Journal of Materials Engineering, 2015, 43 (9): 53- 59.
doi: 10.11868/j.issn.1001-4381.2015.09.009
7 GENEVOIS C , DESCHAMPS A , DENQUIN A , et al. Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds[J]. Acta Materialia, 2005, 53 (8): 2447- 2458.
doi: 10.1016/j.actamat.2005.02.007
8 SRIVATSAN T S , VASUDEVAN S , PARK L . The tensile deformation and fracture behavior of friction stir welded aluminum alloy 2024[J]. Materials Science and Engineering:A, 2007, 466 (1/2): 235- 245.
9 LI J Q , LIU H J . Characteristics of the reverse dual-rotation friction stir welding conducted on 2219-T6 aluminum alloy[J]. Materials & Design, 2013, 45, 148- 154.
10 SHEN Z K , YANG X Q , ZHANG Z H , et al. Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints[J]. Materials & Design, 2013, 44, 476- 486.
11 BENAVIDES S , LI Y , MURR L E , et al. Low-temperature friction-stir welding of 2024 aluminum[J]. Scripta Materialia, 1999, 41 (8): 809- 815.
doi: 10.1016/S1359-6462(99)00226-2
12 LIU H J , ZHANG H J , YU L . Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy[J]. Materials & Design, 2011, 32 (3): 1548- 1553.
13 ZHANG H J , LIU H J , YU L . Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints[J]. Materials & Design, 2011, 32 (8/9): 4402- 4407.
14 FRATINI L , BUFFA G , SHIVPURI R . Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints[J]. Acta Materialia, 2010, 58 (6): 2056- 2067.
doi: 10.1016/j.actamat.2009.11.048
15 LIU H J , ZHANG H J , HUANG Y X , et al. Mechanical properties of underwater friction stir welded 2219 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2010, 20 (8): 1387- 1391.
doi: 10.1016/S1003-6326(09)60309-5
16 徐瑞琦, 王文, 郝亚鑫, 等. 7A04-T6铝合金水下搅拌摩擦焊接接头的组织和性能[J]. 航空材料学报, 2015, 35 (4): 16- 21.
doi: 10.11868/j.issn.1005-5053.2015.4.003
16 XU R Q , WANG W , HAO Y X , et al. Microstructure and mechanical properties of underwater friction stir welded 7A04-T6 aluminum alloy[J]. Journal of Aeronautical Materials, 2015, 35 (4): 16- 21.
doi: 10.11868/j.issn.1005-5053.2015.4.003
17 ZHANG Z M , YU J M , WANG Q , et al. Effects of multiple plastic deformations on microstructure and mechanical properties of 7A04-T6[J]. Rare Metal Materials and Engineering, 2011, 40 (Suppl 3): 69- 72.
18 CHANG C I , DU X H , HUANG J C . Producing nanograined microstructure in Mg-Al-Zn alloy by two-step friction stir processing[J]. Scripta Materialia, 2008, 59 (3): 356- 359.
doi: 10.1016/j.scriptamat.2008.04.003
19 DIERINGA H . Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes:a review[J]. Journal of Materials Science, 2011, 46 (2): 289- 306.
doi: 10.1007/s10853-010-5010-6
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 赵云松, 杨昭, 陈瑞志, 张剑, 骆宇时, 刘丽荣. Ru对第四代镍基单晶高温合金DD22长期时效组织演化的影响[J]. 材料工程, 2022, 50(9): 127-136.
[4] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[5] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[6] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[7] 薛燕鹏, 王效光, 赵金乾, 史振学, 刘世忠, 李嘉荣. 两种型壳温度对DD9单晶涡轮叶片凝固组织的影响[J]. 材料工程, 2022, 50(7): 80-87.
[8] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[9] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[10] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[11] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[12] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[13] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[14] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[15] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn