Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (10): 71-78    DOI: 10.11868/j.issn.1001-4381.2016.000301
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
阳极氧化法制备铝基超疏水涂层及其稳定性和耐蚀性的研究
郑顺丽, 李澄(), 项腾飞, 胡玮, 丁诗炳, 王晶, 刘盼金
南京航空航天大学 材料科学与技术学院, 南京 210016
Fabrication of Aluminum-based Superhydrophobic Coating by Anodization and Research on Stability and Corrosion Resistance
Shun-li ZHENG, Cheng LI(), Teng-fei XIANG, Wei HU, Shi-bing DING, Jing WANG, Pan-jin LIU
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(12512 KB)   HTML ( 21 )  
输出: BibTeX | EndNote (RIS)      
摘要 

铝由于在潮湿的环境中很容易受到污染和损坏,从而严重影响了其美观性和用途。为了改善铝基材料的耐腐蚀性能,采用电化学阳极氧化法与十四酸修饰相结合的方式在铝基底上制备了超疏水涂层。通过场发射扫描电镜(FESEM)和X射线能量色散光谱(EDS)对涂层表面形貌和化学组成进行了表征。同时利用接触角测量仪、喷砂实验和电化学测试分别对涂层表面的润湿性、机械稳定性以及耐腐蚀性能进行了研究。结果表明:当阳极氧化电压为20V时,所制备的涂层为最佳铝基超疏水涂层,此时涂层的接触角为(155.2±0.5)°,滚动角为(3.5±1.3)°。其对应的腐蚀电流密度较铝基底降低了2个数量级,腐蚀电位从-0.629V正移到-0.570V,呈现出优异的耐腐蚀性能。此外,该涂层还具有良好的机械稳定性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑顺丽
李澄
项腾飞
胡玮
丁诗炳
王晶
刘盼金
关键词 超疏水涂层阳极氧化耐蚀性稳定性    
Abstract

Aluminum (Al) can be easily contaminated or damaged after exposure in damp environments, which can adversely affect its aesthetic appearance and desired functionalities. To improve its corrosion resistance, a superhydrophobic coating was fabricated on Al by electrochemical anodization followed by modification with myristic acid. The surface morphology and chemical composition were characterized by using a field emission scanning electron microscope (FESEM) with attached energy dispersive X-ray spectrum (EDS). The surface wettability, mechanical stability as well as corrosion resistance were also investigated by contact angle measuring system, sandblasting test and electrochemical measurements. The results show that the optimal Al-based superhydrophobic coating with a static water contact angle of (155.2±0.5)° and a sliding angle of (3.5±1.3)° is obtained at the anodization voltage of 20V. The corresponding corrosion current density (Icorr) is reduced by 2 orders of magnitude and the corrosion potential (Ecorr) shifts from -0.629V to -0.570V compared to the bare Al substrate, indicating excellent corrosion resistance. Besides, the as-prepared optimal Al-based superhydrophobic coating also suggests good mechanical stability.

Key wordssuperhydrophobic coating    aluminum    anodization    corrosion resistance    stability
收稿日期: 2016-03-15      出版日期: 2017-10-18
中图分类号:  TB37  
基金资助:江苏高校优势学科建设工程资助项目(PAPD-062);南航-中联科技电子新材料联合实验室基金资助项目(201503)
通讯作者: 李澄     E-mail: licheng@nuaa.edu.cn
作者简介: 李澄(1959-), 男, 教授, 博士, 主要从事防护性与功能性表面涂层的研究, 联系地址:江苏省南京市御道街29号南京航空航天大学材料科学与技术学院(210016), E-mail:licheng@nuaa.edu.cn
引用本文:   
郑顺丽, 李澄, 项腾飞, 胡玮, 丁诗炳, 王晶, 刘盼金. 阳极氧化法制备铝基超疏水涂层及其稳定性和耐蚀性的研究[J]. 材料工程, 2017, 45(10): 71-78.
Shun-li ZHENG, Cheng LI, Teng-fei XIANG, Wei HU, Shi-bing DING, Jing WANG, Pan-jin LIU. Fabrication of Aluminum-based Superhydrophobic Coating by Anodization and Research on Stability and Corrosion Resistance. Journal of Materials Engineering, 2017, 45(10): 71-78.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000301      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/71
Fig.1  阳极氧化电压对涂层接触角的影响
Fig.2  水滴和水流在铝基超疏水涂层表面的静态和动态行为照片(a)静态行为;(b)动态行为
Fig.3  铝基超疏水涂层在去离子水中浸泡7天时的接触角变化值
Fig.4  涂层的FESEM图片(a)M-0;(b)M-20;(c)M-22;(1) 低倍;(2) 高倍
Fig.5  阳极氧化铝纳米孔结构到阳极氧化铝纳米线结构的形成过程示意图(a)纳米孔结构的生长;(b)扩孔阶段;(c)纳米线结构的形成;(d)纳米线金字塔结构的形成
Fig.6  涂层的EDS图谱(a)AAO-20;(b)M-20
Sample Contact
angle/(°)
Sliding
angle/(°)
Contact angle
hysteresis/(°)
f1/%
Al 52.6±1.4
AAO-20 0
M-0 114.1±2.7
M-20 155.2±0.5 3.5±1.3 7.0±3.0 15.59
M-22 152.8±0.3 7.0±1.3 9.6±1.7 18.69
Table 1  不同样品表面的接触角、滚动角、接触角滞后以及理论模型因子
Fig.7  喷砂实验装置图
Fig.8  喷砂实验后涂层表面的接触角和滚动角变化值
Fig.9  不同涂层在3.5%NaCl溶液中的动电位极化曲线
Sample Icorr /
(A·cm-2)
Ecorr/
V
Rp/
(Ω·cm2)
Initial
immersion
Al 3.060×10-7 -0.629 8.451×104
AAO-20 1.124×10-8 -1.053 3.982×106
M-0 2.214×10-7 -0.609 2.343×105
M-20 1.527×10-9 -0.570 3.448×107
Immersion
for 12h
M-20 2.255×10-9 ―0.555 4.244×106
Table 2  不同涂层的动电位极化曲线参数
1 FENG L B , CHE Y H , LIU X H , et al. Fabrication of superhydrophobic aluminium alloy surface with excellent corrosion resistance by a facile and environment-friendly method[J]. Applied Surface Science, 2013, 283 (15): 367- 374.
2 SHE Z X , LI Q , WANG Z W , et al. Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy[J]. ACS Applied Materials & Interfaces, 2012, 4 (8): 4348- 4356.
3 KUMAR D , WU X H , FU Q T , et al. Hydrophobic sol-gel coatings based on polydimethylsiloxane for self-cleaning applications[J]. Materials & Design, 2015, 86, 855- 862.
4 徐文骥, 宋金龙, 孙晶, 等. 金属基体超疏水表面制备及应用的研究进展[J]. 材料工程, 2011, (5): 93- 98.
4 XU W J , SONG J L , SUN J , et al. Progress in fabrication and application of superhydrophobic surfaces on metal substrates[J]. Journal of Materials Engineering, 2011, (5): 93- 98.
5 王晨玥, 杨文秀, 张洪敏, 等. 纯钛基体长效超疏水表面的低成本制备[J]. 材料工程, 2015, 43 (11): 13- 18.
doi: 10.11868/j.issn.1001-4381.2015.11.003
5 WANG C Y , YANG W X , ZHANG H M , et al. Preparation of durable superhydrophobic surface on pure titanium substrate via low-cost route[J]. Journal of Materials Engineering, 2015, 43 (11): 13- 18.
doi: 10.11868/j.issn.1001-4381.2015.11.003
6 ZHENG S L , LI C , FU Q T , et al. Fabrication of self-cleaning superhydrophobic surface on aluminum alloys with excellent corrosion resistance[J]. Surface & Coatings Technology, 2015, 276, 341- 348.
7 LAI Y K , GAO X F , ZHANG H F , et al. Designing superhydrophobic porous nanostructures with tunable water adhesion[J]. Advanced Materials, 2009, 21 (37): 3799- 3803.
doi: 10.1002/adma.v21:37
8 ZHENG S L , LI C , FU Q T , et al. Development of stable superhydrophobic coatings on aluminum surface for corrosion-resistant, self-cleaning, and anti-icing applications[J]. Materials & Design, 2016, 93, 261- 270.
9 LAI Y K , TANG Y X , GONG J J , et al. Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging[J]. Journal of Materials Chemistry, 2012, 22 (15): 7420- 7426.
doi: 10.1039/c2jm16298a
10 晏忠钠, 车彦慧, 冯利邦, 等. 超疏水铝合金表面的防覆冰和防黏附行为[J]. 材料工程, 2015, 43 (9): 25- 29.
doi: 10.11868/j.issn.1001-4381.2015.09.005
10 YAN Z N , CHE Y H , FENG L B , et al. Anti-icing and anti-adhesion behavior of superhydrophobic aluminum alloy surface[J]. Journal of Materials Engineering, 2015, 43 (9): 25- 29.
doi: 10.11868/j.issn.1001-4381.2015.09.005
11 曾泽延, 章哲承. 超疏水吸油性聚二乙烯基苯的制备及其油水分离性能[J]. 材料科学与工程学报, 2015, 33 (2): 293- 297.
11 ZENG Z Y , ZHANG Z C . Preparation and oil/water separation performance of super-hydrophobic and super-oleophilic poly divinyl benzene[J]. Journal of Materials Science and Engineering, 2015, 33 (2): 293- 297.
12 WU X H , FU Q T , KUMAR D , et al. Mechanically robust superhydrophobic and superoleophobic coatings derived by sol-gel method[J]. Materials & Design, 2016, 89, 1302- 1309.
13 连峰, 王增勇, 张会臣. 疏水/超疏水船用铝合金表面制备及其耐久性[J]. 材料工程, 2015, 43 (1): 49- 53.
doi: 10.11868/j.issn.1001-4381.2015.01.009
13 LIAN F , WANG Z Y , ZHANG H C . Preparation of hydrophobic/superhydrophobic warship aluminium alloy surface and its durability[J]. Journal of Materials Engineering, 2015, 43 (1): 49- 53.
doi: 10.11868/j.issn.1001-4381.2015.01.009
14 YU J , QIN L , HAO Y F , et al. Vertically aligned boron nitride nanosheets:chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity[J]. ACS Nano, 2010, 4 (1): 414- 422.
doi: 10.1021/nn901204c
15 SHEN Y Z , TAO H J , CHEN S L , et al. Icephobic/anti-icing potential of superhydrophobic Ti6Al4V surfaces with hierarchical textures[J]. RSC Advances, 2015, 5 (3): 1666- 1672.
doi: 10.1039/C4RA12150C
16 QIAN B T , SHEN Z Q . Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir, 2005, 21 (20): 9007- 9009.
doi: 10.1021/la051308c
17 KANNARPADY G K , KHEDIR K R , ISHIHARA H , et al. Controlled growth of self-organized hexagonal arrays of metallic nanorods using template-assisted glancing angle deposition for superhydrophobic applications[J]. ACS Applied Materials & Interfaces, 2011, 3 (7): 2332- 2340.
18 GANESH V A , NAIR A S , RAUT H K , et al. Superhydrophobic fluorinated POSS-PVDF-HFP nanocomposite coating on glass by electrospinning[J]. Journal of Materials Chemistry, 2012, 22 (35): 18479- 18485.
doi: 10.1039/c2jm33088a
19 DONG C S , GU Y , ZHONG M L , et al. Fabrication of superhydrophobic Cu surfaces with tunable regular micro and random nano-scale structures by hybrid laser texture and chemical etching[J]. Journal of Materials Processing Technology, 2011, 211 (7): 1234- 1240.
doi: 10.1016/j.jmatprotec.2011.02.007
20 YIN B , FANG L , HU J , et al. A facile method for fabrication of superhydrophobic coating on aluminum alloy[J]. Surface and Interface Analysis, 2012, 44 (4): 439- 444.
doi: 10.1002/sia.v44.4
21 THIEME M , FRENZEL R , SCHMIDT S , et al. Generation of ultrahydrophobic properties of aluminium-a first step to self-cleaning transparently coated metal surfaces[J]. Advanced Engineering Materials, 2001, 3 (9): 691- 695.
doi: 10.1002/1527-2648(200109)3:9<691::AID-ADEM691>3.0.CO;2-8
22 BARKHUDAROV P M , SHAH P B , WATKINS E B , et al. Corrosion inhibition using superhydrophobic films[J]. Corrosion Science, 2008, 50 (3): 897- 902.
doi: 10.1016/j.corsci.2007.10.005
23 HAN J K , KIM J , CHOI Y C , et al. Structure of alumina nanowires synthesized by chemical etching of anodic alumina membrane[J]. Physica E, 2007, 36 (2): 140- 146.
doi: 10.1016/j.physe.2006.10.003
24 XIAO Z L , HAN C Y , WELP U , et al. Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes[J]. Nano Letters, 2002, 2 (11): 1293- 1297.
doi: 10.1021/nl025758q
25 LI Y , LING Z Y , CHEN S S , et al. Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization[J]. Chemical Communications, 2010, 46 (2): 309- 311.
doi: 10.1039/B914703A
26 PENG S , DONG T , YANG X J , et al. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires[J]. ACS Applied Materials & Interfaces, 2014, 6 (7): 4831- 4841.
27 LI S Y , WANG J , LI Y , et al. Photoluminescent properties of anodic aluminum oxide films formed in a mixture of malonic and sulfuric acid[J]. Superlattices and Microstructures, 2014, 75, 294- 302.
doi: 10.1016/j.spmi.2014.07.018
28 WANG J Y , LI C , YIN C Y , et al. Ultrasmall nanopores obtained by electric field enhanced one-step anodisation of aluminium alloy[J]. Surface & Coatings Technology, 2014, 258, 615- 623.
29 TAO Y T . Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum[J]. Journal of the American Chemical Society, 1993, 115 (10): 4350- 4358.
doi: 10.1021/ja00063a062
30 YIN Y S , LIU T , CHEN S G , et al. Structure stability and corrosion inhibition of super-hydrophobic film on aluminum in seawater[J]. Applied Surface Science, 2008, 255 (5): 2978- 2984.
doi: 10.1016/j.apsusc.2008.08.088
31 CASSIE A B D , BAXTER S . Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40, 546- 551.
doi: 10.1039/tf9444000546
32 XU W J , SONG J L , SUN J , et al. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces[J]. ACS Applied Materials & Interfaces, 2011, 3 (11): 4404- 4414.
[1] 郗森良, 王晓军, 张同环, 韩宗盈, 高猛, 周仕学, 于昊. 过渡金属氟化物改善2NaBH4+MgH2储氢体系的放氢热力学性能[J]. 材料工程, 2022, 50(9): 97-104.
[2] 赵云松, 杨昭, 陈瑞志, 张剑, 骆宇时, 刘丽荣. Ru对第四代镍基单晶高温合金DD22长期时效组织演化的影响[J]. 材料工程, 2022, 50(9): 127-136.
[3] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[4] 潘士伟, 王自东, 陈晓华, 王艳林, 陈凯旋, 朱谕至. 锆微合金化增强铝合金的研究进展[J]. 材料工程, 2022, 50(8): 17-33.
[5] 金士杰, 田鑫, 林莉. 铝合金搅拌摩擦焊超声检测研究进展[J]. 材料工程, 2022, 50(8): 45-59.
[6] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[7] 夏先朝, 冯学磊, 孙京丽, 聂敬敬, 庞松, 袁勇, 董泽华. 镁合金超疏水环氧复合涂层的制备与性能[J]. 材料工程, 2022, 50(8): 124-132.
[8] 倪航, 刘万能, 柯尊洁, 田玉, 朱小龙, 郑广. MgCo2O4海胆状电极材料的制备及其电化学性能[J]. 材料工程, 2022, 50(8): 143-152.
[9] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[10] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[11] 王付胜, 孔繁淇, 王文平, 陈亚军. 航空铝合金原位腐蚀疲劳性能及断裂机理[J]. 材料工程, 2022, 50(6): 149-156.
[12] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[13] 潘廷仙, 郑秋燕, 李茂辉, 同鑫, 胡长刚, 田娟. 酸处理对FeN/ZIF-8催化剂氧还原反应催化性能的影响[J]. 材料工程, 2022, 50(5): 122-129.
[14] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[15] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn