Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (10): 88-94    DOI: 10.11868/j.issn.1001-4381.2016.000691
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
采用端面带孔电极进行电火花沉积制备自润滑涂层
曹同坤, 孙何, 王晓明
青岛科技大学 机电工程学院, 山东 青岛 266061
Self-lubricating Coating Prepared by Electro- spark Deposition Using Electrode with Drilled Holes at End Face
CAO Tong-kun, SUN He, WANG Xiao-ming
College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China
全文: PDF(9857 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用端面带孔电极,在孔中填充MoS2,利用电火花沉积(ESD)方法在高速钢基体上制备Cu-MoS2自润滑涂层。分析自润滑涂层的成分及微观形貌,研究电容、沉积时间对自润滑涂层厚度的影响,以及自润滑涂层的摩擦性能和磨损机理。结果表明:采用这种电极制备的自润滑涂层中只存在MoS2和Cu。其微观形貌显示,自润滑涂层表面凹凸不平,并存在气孔,呈现典型的电火花沉积特征;在第3挡电容下,自润滑涂层的表面质量最好。随着电容、沉积时间的增加,涂层厚度出现先增加后下降的规律。在第3挡下制备的自润滑涂层的摩擦因数最小,随着摩擦时间的增加,在第1挡和第3挡下制备的自润滑涂层的摩擦因数都比较稳定,而在第5挡下制备的自润滑涂层的摩擦因数具有明显的上升趋势。SEM照片表明,磨损表面具有滑移剪切的现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹同坤
孙何
王晓明
关键词 电火花沉积自润滑涂层微观形貌摩擦磨损    
Abstract:Cu-MoS2 self-lubricating coatings were prepared on high speed steel by electro-spark deposition (ESD) by electrode with drilled holes at the end of faces. The holes were filled with MoS2. The composition and micro morphology of the coatings were analysed. The effects of capacitance and deposition time on coating thickness were studied, and also the friction performance and wear mechanism were studied. The results show that there is nothing but MoS2 and Cu exist in the coating fabricated by this way. The micrographs show that the coating surface is uneven and many pores existing on the surface, showing typical characteristics of ESD; the surface quality is the best when it was prepared in the 3rd grade capacitance. Coating thickness firstly increases and then decreases with the increase of capacitance and deposition time. The self-lubricating coating prepared in the 3rd-grade capacitance has the lowest friction coefficient. The friction coefficients of the self-lubricating coatings prepared in the 1st and the 3rd grades stay almost constant with the increase of friction time. The friction coefficient of self-lubricating coatings prepared in the 5th grade show a clear upward trend when friction time increases. Scanning electron microscope images show shear-slip phenomenon on the wear surface.
Key wordselectro-spark deposition    self-lubricating coating    micro morphology    friction and wear
收稿日期: 2016-06-08      出版日期: 2017-10-18
中图分类号:  TH117  
通讯作者: 曹同坤(1976-),男,副教授,博士,主要从事切削加工、自润滑材料的研究,联系地址:山东省青岛市松岭路99号青岛科技大学机电工程学院(266061),E-mail:caotk@163.com     E-mail: caotk@163.com
引用本文:   
曹同坤, 孙何, 王晓明. 采用端面带孔电极进行电火花沉积制备自润滑涂层[J]. 材料工程, 2017, 45(10): 88-94.
CAO Tong-kun, SUN He, WANG Xiao-ming. Self-lubricating Coating Prepared by Electro- spark Deposition Using Electrode with Drilled Holes at End Face. Journal of Materials Engineering, 2017, 45(10): 88-94.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000691      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/88
[1] 王海斗,徐滨士,刘家浚.固体润滑膜层技术与应用[M].北京:国防工业出版社,2009. WANG H D, XU B S, LIU J J. Technology and application of solid lubricating films[M]. Beijing:National Defense Industry Press, 2009.
[2] NIU M Y, BI Q L, YANG J, et al. Tribological performance of a Ni3Al matrix self-lubricating composite coating tested from 25 to 1000℃[J].Surface & Coatings Technology, 2012, 206(19/20):3938-3943.
[3] SEGU D Z, KIM J H, SI G C, et al. Application of Taguchi techniques to study friction and wear properties of MoS2 coatings deposited on laser textured surface[J]. Surface and Coatings Technology, 2013, 232(10):504-514.
[4] ESPALLARGASA N, VITOUXA L, ARMADA S. The wear and lubrication performance of liquid-solid self-lubricated coatings[J]. Surface and Coatings Technology, 2013, 235(11):342-353.
[5] AOUADI S M, PAUDEL Y, LUSTER B, et al. Adaptive Mo2N/MoS2/Ag tribological nanocomposite coatings for aerospace applicating[J].Tribology Letters,2008,29(2):95-103.
[6] 谭英梅,曹国剑,李双,等.球磨制备轴承珠表面自润滑涂层及其摩擦性能[J].材料工程, 2015,43(9),19-24. TAN Y M, CAO G J, LI S, et al. Preparation and friction properties of self-lubricating layer on bearing balls by ball milling[J]. Journal of Materials Engineering, 2015, 43(9), 19-24.
[7] DENG J X, LIU J H, ZHAO J L, et al. Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes[J].Wear, 2008, 264(3/4):298-307.
[8] DU J H, LI Z X, LIU G J, et al. Deposition and coating properties on CVD tungsten[J]. Materials Protection, 2004, 37(2):114-115.
[9] WANG H D, XU B S, LIU J J, et al. The friction-reduction model of the iron sulfide film prepared by plasma source ion sulfuration[J].Surface & Coating Technology, 2007, 201(9/11):5236-5239.
[10] 朴钟宇,徐滨士,王海斗,等.涂层厚度对喷涂层疲劳磨损寿命的影响[J].摩擦学学报,2010, 30(5):448-452. PIAO Z Y, XU B S, WANG H D, et al. Experimental investigation of influence of thickness on contact fatigue lifetime of sprayed coatings[J]. Tribology, 2010, 30(5):448-452.
[11] 杨胶溪,张健全,常万庆,等.激光熔覆WC/Ni基复合涂层高温滑动干摩擦磨损性能[J].材料工程,2016,44(6),110-116. YANG J X, ZHANG J Q, CHANG W Q, et al. High temperature dry sliding friction and wear performance of laser cladding WC/Ni composite coating[J]. Journal of Materials Engineering, 2016, 44(6), 110-116.
[12] PODCHERNYAEVA I A, PANASHENKO V M, PANASYUKA D, et al. Electric-spark hardening of VT3-1 titanium alloy with tungsten-free composite ceramics[J].Powder Metallurgy & Metal Ceramics, 2007, 46(9/10):442-448.
[13] 罗成,董仕节,熊翔,等.电火花沉积表面处理技术的应用进展[J].表面技术,2009,38(4):53-56. LUO C, DONG S J, XIONG X. Application progress of electrospark deposition surfacing technology[J]. Surface Technology, 2009, 38(4):53-56.
[14] TKACHENKO Y G, YURCHENKO D Z, BRITUN V F, et al. Structure and properties of wear-resistant spark-deposited coatings produced with a titanium carbide alloy anode[J]. Powder Metallurgy and Metal Ceramics, 2013, 52(5/6):306-313.
[15] TANG J M. Mechanical and tribological properties of the TiC-TiB2 composite coating deposited on 40Cr-steel by electro spark deposition[J]. Applied Surface Science, 2016, 365(3):202-208.
[16] 吴公一,张占领,孙凯伟,等. TA2表面电火花沉积Zr/WC复合涂层特性及界面行为研究[J].表面技术,2016,45(1):96-100. WU G Y, ZHANG Z L, SUN K W, et al. Coating Characters and interface behavior between TA2 and Zr/WC coating produced by electro-spark deposition[J]. Surface Technology, 2016, 45(1):96-100.
[17] ZHANG Y S, HAN Z, WANG K, et al. Friction and wear behaviors of nanocrystal-line surface layer of pure copper[J]. Wear, 2006, 260(9/10):942-948.
[18] STRAFFELINI G, PELLIZZARI M, MOLINARI A. Influence of load and temperature on the dry sliding behaviour of Al-based metal-matrix-composites against friction material[J]. Wear, 2004, 256(7/8):754-763.
[1] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[2] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[3] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[4] 江泽琦, 冯彦寒, 方建华, 刘坪, 陈波水, 谷科城, 吴江. 含硫代磷酸铵盐润滑油在电磁场作用下的摩擦学性能[J]. 材料工程, 2018, 46(9): 95-100.
[5] 杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
[6] 陈俊, 张代军, 张天骄, 包建文, 钟翔屿, 张朋, 刘巍. 溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布[J]. 材料工程, 2018, 46(2): 41-49.
[7] 刘小辉, 王帅星, 杜楠, 赵晴, 康佳, 刘欢欢. 电解液中Na2WO4对Ti2AlNb微弧氧化膜结构及摩擦磨损性能的影响[J]. 材料工程, 2018, 46(2): 84-92.
[8] 刘用, 马胜国, 刘英杰, 张腾, 杨慧君. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2): 99-104.
[9] 樊振中, 熊艳才, 陆政, 孙刚, 王胜强. Al-7Sn-1.1Ni-Cu-0.2Ti轴承合金微观组织与力学性能[J]. 材料工程, 2017, 45(6): 8-16.
[10] 金小越, 吴杰, 杨璇, 王彬, 陈琳, 曲尧, 薛文斌. 槽电压对纯铁表面液相等离子体电解硼碳氮三元共渗层摩擦磨损性能的影响[J]. 材料工程, 2017, 45(4): 58-64.
[11] 王恩青, 岳建岭, 李淼磊, 李栋, 黄峰. Si含量对VAlSiN涂层微结构、力学性能和摩擦磨损性能的影响[J]. 材料工程, 2017, 45(4): 70-76.
[12] 张林, 陈多礼, 朱旻昊, 蔡振兵, 彭金方. 氧化石墨烯对阻尼丁腈橡胶抗老化性能的影响[J]. 材料工程, 2017, 45(3): 7-12.
[13] 王铁钢, 李柏松, 阎兵, 范其香, 刘艳梅, 宫骏, 孙超. 爆炸喷涂WC-Co/MoS2-Ni多层复合自润滑涂层的摩擦学行为[J]. 材料工程, 2017, 45(3): 73-79.
[14] 张雪辉, 周亮亮, 李晓闲, 张陈增, 王成, 章标, 陈颢, 梁彤祥. Y2O3对W-4.9Ni-2.1Fe合金摩擦磨损行为的影响[J]. 材料工程, 2017, 45(11): 115-121.
[15] 刘伯威, 李亚林, 刘咏, 杨阳, 唐兵, 匡湘铭. 聚丙烯腈纤维对汽车摩擦材料性能的影响[J]. 材料工程, 2017, 45(10): 103-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn