Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (10): 138-144    DOI: 10.11868/j.issn.1001-4381.2015.001146
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
充氢Cr-Mo钢变形过程的声发射特征
滕全全1, 汪悦2, 有移亮1, 张峥1
1 北京航空航天大学 材料科学与工程学院, 北京 100191;
2 中国空间技术研究院, 北京 100094
Acoustic Emission Characteristics of Hydrogen Charged Cr-Mo Steel During Deformation
TENG Quan-quan1, WANG Yue2, YOU Yi-liang1, ZHANG Zheng1
1 School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
2 China Academy of Space Technology, Beijing 100094, China
全文: PDF(6978 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 对电化学充氢后的2.25Cr-1Mo钢进行拉伸实验,并在实时拉伸过程中采集声发射信号。结果表明:充氢后2.25Cr-1Mo钢抗拉强度为536.30MPa,下降约57MPa;断面收缩率为43.62%,下降约7%。拉伸断口上出现由氢脆引起的"白点"特征与准解理断裂形貌。充氢后试样拉伸过程弹性阶段的声发射信号活动增强,而屈服阶段的声发射信号活动减弱,变形过程的声发射信号累积绝对能量值要比未充氢试样低约1个数量级。充氢试样拉伸产生的声发射信号比未充氢试样的信号幅值降低约0.33mV,频宽降低0.06MHz。通过对声发射信号的分析发现,充氢试样变形的微观机制为氢促进位错发射与运动,而交叉滑移受到抑制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
滕全全
汪悦
有移亮
张峥
关键词 声发射Cr-Mo钢充氢位错运动拉伸变形    
Abstract:Tensile test was conducted on 2.25Cr-1Mo steel specimens that were electrochemically hydrogen charged and acoustic emission signals were collected in the real-time stretching process. The results show that tensile strength of 2.25Cr-1Mo steel with hydrogen charging is 536.30MPa, decreased by approximately 57MPa and reduction of area is 43.62%, decreased by 7%, compared with the specimens without hydrogen charging. Hydrogen embrittlement-induced regions known as "fisheyes" and quasi-cleavage morphology are observed on the tensile fracture surface. The AE signals activity in the elastic stage of hydrogen charged 2.25Cr-1Mo steel is enhanced, but the acoustic emission signals activity in the yield stage is decreased. The cumulative absolute energy of AE signals of hydrogen charged specimens during deformation is almost one order magnitude lower than that without hydrogen charged specimens. The AE signals amplitude generated by the hydrogen charged specimens is about 0.33mV lower than that of the specimens without hydrogen charging during tensile deformation, and that the bandwidth of signal is reduced by 0.06MHz. Though the analysis of AE signals, it is found that tensile deformation microscopic mechanism of hydrogen charged specimens is that dislocation emission and motion is enhanced but dislocation cross-slip is inhibited by hydrogen.
Key wordsacoustic emission    Cr-Mo steel    hydrogen charging    dislocation motion    tensile deformation
收稿日期: 2015-09-14      出版日期: 2017-10-18
中图分类号:  TG115.28  
通讯作者: 张峥(1965-),男,教授,主要从事材料的失效分析与预测预防方面研究工作,联系地址:北京市海淀区学院路37号北京航空航天大学材料科学与工程学院(100191),E-mail:zhangzh@buaa.edu.cn     E-mail: zhangzh@buaa.edu.cn
引用本文:   
滕全全, 汪悦, 有移亮, 张峥. 充氢Cr-Mo钢变形过程的声发射特征[J]. 材料工程, 2017, 45(10): 138-144.
TENG Quan-quan, WANG Yue, YOU Yi-liang, ZHANG Zheng. Acoustic Emission Characteristics of Hydrogen Charged Cr-Mo Steel During Deformation. Journal of Materials Engineering, 2017, 45(10): 138-144.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001146      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/138
[1] 南雲道彦.钢的氢脆的新研究方向[J].金属热处理,2010, 25(3):1-6. NAGUMO M. Turning of the research direction on hydrogenembrittelment of steels[J]. Heat Treatment of Metals,2010,25(3):1-6.
[2] PHAM T H,SARAZIN-BAUDOUX C,PETIT J,et al.Fatigue crack propagation in gaseous hydrogen environment in low alloy steel[J].Procedia Engineering,2015,114(33):354-360.
[3] 李永德,徐娜,郭卫民,等.高压气相热充氢对SUJ2轴承钢超高周疲劳行为的影响[J].材料工程,2014(2):87-92. LI Y D,XU N,GUO W M, et al. The influence of high pressure thermal hydrogen charging on very high cycle fatigue behavior of SUJ2 bearing steel[J].Journal of Materials Engineering,2014(2):87-92.
[4] 王洁,聂宝华,蔡成,等.加氢反应器环境服役的2.25Cr1Mo钢性能退化研究[J].材料工程,2015,43(1):82-88. WANG J,NIE B H,CAI C,et al. Performance degradation of 2.25Cr1Mo steel serviced in hydrogenation reactor[J]. Journal of Materials Engineering,2015,43(1):82-88.
[5] ROBERTSON I M. The effect of hydrogen on dislocation dynamics[J].Engineering Fracture Mechanics,1999,64(5):671-692.
[6] EMERSON E,AVINOGRADOV A,DLMERSON D L. Application of acoustic emission method of hydrogen embrittlement mechanism in the low-carbon steel[J].Journal of Alloys and Compounds,2015,10(1):460-463.
[7] LYNCH S P. Hydrogen embrittlement(HE)phenomena and mechanism[J].Stress Corrosion Cracking,2012,30(3/4):90-130.
[8] BAMOUSH A,VEHOFF H. Recent developments in the study of hydrogen embrittlement:hydrogen effect on dislocation nucleation[J]. Acta Materialia,2010,58(16):5274-5285.
[9] HEIPLE C R,CARPENTER S H. Acoustic emission produced by deformation of metals and alloys.Ⅱ[J].British Medical Journal,1987,6(9):215-237.
[10] KATO H,TOZAWA T,TAKAYAMA Y. Acoustic emission generated during the tensile testing of AZ31 magnesium alloy[J]. Journal of Japan Institute of Light Metals,1990,40(7):514-519.
[11] CHOI N S, KIM T W, RHEE K Y. Kaiser effect in acoustic emission from composites during thermal cyclic-loading[J]. NDT & E International,2005,38(4):268-274.
[12] BELLAHCENE T,CAPELLE J,ABERANE M,et al. Effect of hydrogen on mechanical properties of pipeline API 5L X70 steel[J]. Applied Mechanics & Materials,2011,146(3):213-225.
[13] LONG Q Y,YIN H. Acoustic emission during deformation of dual-phase steels[J]. Metallurgical and Materials Transactions A,1990,21(1):373-379.
[14] MUKHOPADHYAY C K,RAY K K,JAYAKUMAR T,et al. Acoustic emission from tensile deformation of un-notched and notched specimens of AlSi type 304 stainless steels[J]. Materials Science & Engineering:A,1998,25(1/2):98-106.
[15] WANG S,HASHIMOTO N,WANG Y M,et al. Activation volume and density of mobile dislocations in hydrogen-charged iron[J].Acta Materialia,2013,61(13):4734-4742.
[16] BARNOUSH A,ASGARI M,JOHNSEN R. Resolving the hydrogen effect on dislocation nucleation and mobilety by electrochemical nanoindentation[J]. Acta Materialia,2012,66(6):414-417.
[17] 刘白.氢对位错运动的影响[J].材料科学与工程,2001,19(1):63-66. LIU B. The effects of hydrogen on dislocation[J].Materials Science & Engineering,2001,19(1):63-66.
[18] NIBUR K A,BAHR D F,SOMERDAY B P,et al. Hydrogen effects on dislocation activity in austenitic stainless steel[J].Acta Materialia,2006,54(10):2677-2684.
[19] HERMIDA J D,ROVIGLIONE A. Stacking fault energy decrease in austenitic stainless steels induced by hydrogen pairs formation[J]. Scripta Materialia,1998,39(8):1145-1149.
[20] AUERT I,OIVE J M, SAINTIER N, et al. The effect of internal hydrogen on surface slip localization on polycrystalline AlSi 316L stainless steel[J]. Material Science & Engineering:A,2010,527(21):5858-5866.
[21] JCM L,PARK C G,OHR S M. Chemical driving force for dislocation motion in hydrogen embrittlement[J]. Scripta Metallurgica,1986,20(3):371-376.
[1] 严实, 赵金阳, 陆夏美, 曾涛. 基于声发射技术的三维编织复合材料低速冲击损伤分析[J]. 材料工程, 2014, 0(7): 92-97.
[2] 李国禄, 张志强, 王海斗, 徐滨士, 朴钟宇. 涂层疲劳损伤声发射特征参数及损伤机理[J]. 材料工程, 2013, 0(6): 45-49,71.
[3] 朱荣华, 刚铁, 万楚豪. 基于声发射和双谱分析的铝合金损伤原位监测研究[J]. 材料工程, 2013, 0(5): 67-72.
[4] 严实, 李冬华, 泮世东, 冯吉才. 基于声发射技术的三维编织复合材料压缩破坏分析[J]. 材料工程, 2013, (2): 22-28.
[5] 张志强, 李国禄, 王海斗, 徐滨士, 朴钟宇. 涂层接触疲劳损伤过程中的声发射小波分析[J]. 材料工程, 2012, 0(9): 48-53.
[6] 张志强, 李国禄, 王海斗, 徐滨士, 朴钟宇. 等离子喷涂Fe基合金涂层组织及接触疲劳损伤性能的研究[J]. 材料工程, 2012, 0(6): 59-62.
[7] 任会兰, 方敏杰, 贺建华. 压缩载荷下陶瓷材料声发射特性的实验研究[J]. 材料工程, 2012, 0(2): 30-34.
[8] 龙宪海, 阳能军, 王汉功. 基于声发射技术的30CrMnSi钢断裂机理研究[J]. 材料工程, 2011, 0(1): 17-22.
[9] 任会兰, 宁建国, 王颖. 陶瓷材料破坏的声发射特性[J]. 材料工程, 2009, 0(2): 54-57.
[10] 张同华, 杨璧玲, 彭永超, 晏雄. 基于声发射检测技术的PE/PE自增强复合材料破损机理分析[J]. 材料工程, 2007, 0(1): 56-59,64.
[11] 杨盛良, 杨德明, 尹新方. 纤维增强铝基复合材料变形损伤过程声发射研究[J]. 材料工程, 1998, 0(6): 46-49.
[12] 马咸尧, 孙大千, 袁新华. 平面应力状态的磁声发射效应与强度分布[J]. 材料工程, 1994, 0(2): 30-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn