Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (11): 15-22    DOI: 10.11868/j.issn.1001-4381.2016.001038
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
电化学处理对碳纤维表面加载碳纳米管的影响机理
宋磊1,*(), 陈纪强2, 范汶鑫2, 王成国2
1 临沂大学 土木工程与建筑学院, 山东 临沂 276000
2 山东大学 材料科学与工程学院, 济南 250061
Influencing Mechanism of Electrochemical Treatment on Preparation of CNTs-grafted on Carbon Fibers
Lei SONG1,*(), Ji-qiang CHEN2, Wen-xin FAN2, Cheng-guo WANG2
1 School of Civil Engineering and Architecture, Linyi University, Linyi 276000, Shandong, China
2 School of Materials Science and Engineering, Shandong University, Jinan 250061, China
全文: PDF(3577 KB)   HTML ( 33 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用电化学阳极氧化法改性碳纤维表面,开发了在连续碳纤维表面简单、高效、均匀地加载催化剂涂层的工艺。通过系统研究电化学改性强度对碳纤维表面物理与化学特性、催化剂颗粒与CNTs形貌、多尺度增强体拉伸强度及其增强复合材料层间剪切强度的影响,优化了碳纤维表面电化学改性工艺。结果表明:催化剂颗粒的形貌与分布不仅影响碳纤维表面沉积的CNTs的形貌,而且影响最终碳纤维表面生长CNTs多尺度增强体及其复合材料的力学性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋磊
陈纪强
范汶鑫
王成国
关键词 碳纤维碳纳米管电化学处理拉伸强度    
Abstract

Based on electrochemical anodic oxidation, an innovative technique was developed to efficiently obtain the uniform catalyst coating on continuous carbon fibers. Through systematic investigation on the effect of electrochemical modified strength on the physical and chemical characteristics of carbon fiber surface, catalyst particles and the morphology of CNTs-grafted carbon fibers, tensile strength of multi-scale reinforcement and the interlaminar shear strength of its reinforced composites, the electrochemical modification process on carbon fibre surface was optimized. The results show that the morphology and distribution of catalyst particles not only affect the morphology of CNTs deposited on the surface of carbon fibres, but also affect the mechanical properties of multi-scale reinforcement and its reinforced composites of CNTs-grafted carbon fibers.

Key wordscarbon fiber    carbon nanotube    electrochemical treatment    tensile strength
收稿日期: 2015-09-10      出版日期: 2017-11-18
中图分类号:  TB321  
基金资助:国家自然科学基金项目(51573087);山东省自然科学基金项目(ZR2014EZ001)
通讯作者: 宋磊     E-mail: sl13869979076@163.com
作者简介: 宋磊(1967-), 女, 副教授, 主要研究建筑材料, 联系地址:临沂大学土木工程与建筑学院(276000), E-mail:sl13869979076@163.com
引用本文:   
宋磊, 陈纪强, 范汶鑫, 王成国. 电化学处理对碳纤维表面加载碳纳米管的影响机理[J]. 材料工程, 2017, 45(11): 15-22.
Lei SONG, Ji-qiang CHEN, Wen-xin FAN, Cheng-guo WANG. Influencing Mechanism of Electrochemical Treatment on Preparation of CNTs-grafted on Carbon Fibers. Journal of Materials Engineering, 2017, 45(11): 15-22.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001038      或      http://jme.biam.ac.cn/CN/Y2017/V45/I11/15
Fig.1  碳纤维表面原位生长碳纳米管工艺流程图
Fig.2  不同工艺改性后碳纤维表面催化生长CNTs的表面形貌
(a)未改性; (b)浓HNO360℃30min; (c)浓HNO3常温5h;(d)强度为100C/g电化学改性
Fig.3  不同电解质处理前后碳纤维结构与性能变化 (a)比表面积; (b)酸碱滴定; (c)拉曼光谱; (d)拉伸强度
Fig.4  不同电解电流处理前后碳纤维结构与性能变化 (a)比表面积测试; (b)酸碱滴定; (c)拉曼光谱; (d)拉伸强度
Fig.5  Co作为催化剂时碳纤维经不同强度电化学改性后在其表面加载的催化剂颗粒的形貌
(a)50C/g; (b)100C/g; (c)150C/g
Fig.6  碳纤维经不同强度的电化学改性后在其表面沉积的CNTs的表面形貌
(a)50C/g; (b)100C/g; (c)150C/g
Fig.7  电化学处理强度对CF/CNFs增强体拉伸强度的影响
Fig.8  电化学处理强度对CF/CNTs增强复合材料层间剪切强度的影响
1 SHARMA S P , LAKKAD S C . Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites[J]. Composites Part A, 2011, 42 (1): 8- 15.
doi: 10.1016/j.compositesa.2010.09.008
2 MATHUR R B , CHATTERJEE S , SINGH B P . Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties[J]. Composites Science and Technology, 2008, 68, 1608- 1615.
doi: 10.1016/j.compscitech.2008.02.020
3 SHARMA S P , LAKKAD S C . Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites[J]. Surface and Coatings Technology, 2010, 205, 350- 355.
doi: 10.1016/j.surfcoat.2010.06.055
4 AGNIHOTRI P , BUSU S , KAR K K . Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites[J]. Carbon, 2011, 49, 3098- 3106.
doi: 10.1016/j.carbon.2011.03.032
5 姚红伟, 钟盛根, 李显华, 等. CNTs强化碳纤维/环氧复合材料界面过渡层及其对界面性能的影响[J]. 材料工程, 2016, 44 (12): 13- 21.
doi: 10.11868/j.issn.1001-4381.2016.12.003
5 YAO H W , ZHONG S G , LI X H , et al. Strengthening interface transition layer of carbon fiber/epoxy composites with CNTs and its effect on interfacial performance[J]. Journal of Materials Engineering, 2016, 44 (12): 13- 21.
doi: 10.11868/j.issn.1001-4381.2016.12.003
6 ZHAO F , HUANG Y , LIU L , et al. Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites[J]. Carbon, 2011, 49, 2624- 2632.
doi: 10.1016/j.carbon.2011.02.026
7 DAVIS D C , WIKERSON J W , ZHU J , et al. Improvements in mechanical properties of a carbon epoxy composites using nanotubes science and technology[J]. Composites Structure, 2010, 92, 2653- 2662.
doi: 10.1016/j.compstruct.2010.03.019
8 AN Q , RIDER A N , THOSTENSON E T . Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties[J]. Carbon, 2012, 50, 4130- 4143.
doi: 10.1016/j.carbon.2012.04.061
9 WANG Y H , LIN J , HUAN C , et al. Synthesis of large area aligned carbon nanotube arrays from C2H2-H2 mixture by rf plasma-enhanced chemical vapor deposition[J]. Applied Physics Letters, 2001, 79, 680- 682.
doi: 10.1063/1.1390314
10 MATHUR R B , CHATTERJEE S , SINGH B P . Growth of carbon nanotubes on carbon fiber substrates to produce hybrid/phenolic composites with improved mechanical properties[J]. Composites Science and Technology, 2008, 68, 1608- 1615.
doi: 10.1016/j.compscitech.2008.02.020
11 SHARMA S P , LAKKAD S C . Morphology study of carbon nanospecies grown on carbon fibers by thermal CVD technique[J]. Surface and Coatings Technology, 2009, 203, 1329- 1335.
doi: 10.1016/j.surfcoat.2008.10.043
12 CHEN P , ZHANG H B . Studies on structure and property of carbon-nanotubes formed catalytically from decomposition of CH4 or CO[J]. Chemical Journal of Chinese Universities, 1998, 19, 765- 769.
13 SONOYAMA N , OHSHITA M , NIJUBU A , et al. Synthesis of carbon nanotubes on carbon fibers by means of two-step thermochemical vapor deposition[J]. Carbon, 2006, 44, 1754- 1761.
doi: 10.1016/j.carbon.2005.12.039
14 DOWN W B , BAKER R . Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers[J]. Journal of Materials Research, 1995, 10, 625- 633.
doi: 10.1557/JMR.1995.0625
15 MASCHMANN M R , AMAMA P B , GOYAL A , et al. Freestanding vertically oriented single-walled carbon nanotubes synthesized using microwave plasma-enhanced CVD[J]. Carbon, 2006, 44, 2758- 2763.
doi: 10.1016/j.carbon.2006.03.040
16 PITTMAN C U , JIANG W , YUE Z R , et al. Surface properties of electrochemically oxidized carbon fibers[J]. Carbon, 1999, 37, 1797- 1807.
doi: 10.1016/S0008-6223(99)00048-2
17 景鹏展, 朱姝, 余木火, 等. 基于碳纤维表面修饰制备碳纤维织物增强聚苯硫醚(CFF/PPS)热塑性复合材料[J]. 材料工程, 2016, 44 (3): 21- 27.
doi: 10.11868/j.issn.1001-4381.2016.03.004
17 JING P Z , ZHU S , YU M H , et al. Preparation of carbon fiber fabric reinforced polyphenylene sulfide (CFF/PPS) thermoplastic composites based on surface modification of carbon fibers[J]. Journal of Materials Engineering, 2016, 44 (3): 21- 27.
doi: 10.11868/j.issn.1001-4381.2016.03.004
18 郭云霞, 刘杰, 梁节英. 电化学改性PAN基碳纤维表面及其机理探析[J]. 无机材料学报, 2009, 24, 853- 858.
18 GUO Y X , LIU J , LIANG J Y . Modification mechanism of the surface-treated PAN-based carbon fiber by electrochemical oxidation[J]. Journal of Inorganic Materials, 2009, 24, 853- 858.
19 韩风, 潘鼎. 碳纤维电化学表面氧化处理效果的表征[J]. 高科技纤维与应用, 2000, 25 (1): 39- 43.
19 HAN F , PAN D . Characterization of electro-chemically treatea carbon fiber surface[J]. Hi-Tech Fiber and Application, 2000, 25 (1): 39- 43.
20 GREEF N D , ZHANG L M , MAGREZ A , et al. Direct growth of carbon nanotubes on carbon fibers:effect of the CVD parameters on the degradation of mechanical properties of carbon fibers[J]. Diamond and Related Materials, 2015, 51, 39- 48.
doi: 10.1016/j.diamond.2014.11.002
21 林治涛. PAN基碳纤维制备过程中表面处理关键技术研究[D]. 济南: 山东大学, 2014.
21 LIN Z T. Study on key techniques of the surface treatment during the process of manufacturing PAN-based carbon fibers[D].Jinan:Shandong University, 2014.
22 LINSAY B , ABELM L , WATTS J F . A study of electrochemically treated PAN based carbon fibers by IGC and XPS[J]. Carbon, 2007, 45, 2433- 2444.
doi: 10.1016/j.carbon.2007.04.017
23 YUE Z R , JIANG W , WANG L , et al. Surface characterization of electrochemically oxidized carbon fibers[J]. Carbon, 1999, 37, 1785- 1796.
doi: 10.1016/S0008-6223(99)00047-0
24 NERUSHEV O A , DITTMAR S , MORJAN R E , et al. Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition[J]. Journal of Applied Physics, 2003, 93, 4185- 4190.
doi: 10.1063/1.1559433
25 YUMITORI S , NAKANISHI Y . Effect of anodic oxidation of coal tar pitch-based carbon fiber on adhesion in epoxy matrix:part 1 comparison between H2SO4 and NaOH solutions[J]. Composites Part A, 1996, 27, 1051- 1058.
doi: 10.1016/1359-835X(96)00057-7
[1] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[2] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[3] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[4] 张婷, 李生娟, 吉莹, 于沺沺, 李田成, 薛裕华. 氮掺杂石墨烯原位生长碳纳米管复合过渡金属催化剂的制备及电催化性能[J]. 材料工程, 2022, 50(4): 123-131.
[5] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[6] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[7] 刘旺冠, 蒋兴华, 郭建华. 氮化铝/氮化硼/碳纳米管/硅橡胶复合材料的力致填料取向对导热性能的影响[J]. 材料工程, 2022, 50(2): 127-134.
[8] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[9] 乔俊宇, 李秀涛. 基于MOFs的碳纳米管复合材料的制备和应用进展[J]. 材料工程, 2021, 49(9): 27-40.
[10] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[11] 赵文青, 齐哲, 吕晓旭, 焦健, 马壮, 朱时珍. 界面层对CVI-mini SiCf/SiC复合材料力学性能的影响[J]. 材料工程, 2021, 49(7): 71-77.
[12] 焦春荣, 焦健. 料浆对熔渗工艺制备碳纤维织物增强碳化硅复合材料的影响[J]. 材料工程, 2021, 49(7): 78-84.
[13] 张代军, 陈俊, 包建文, 钟翔屿, 陈祥宝. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响[J]. 材料工程, 2021, 49(6): 178-184.
[14] 刘旭, 徐海, 徐立新, 张宏, 周琼. 改性碳纤维增强尼龙6复合材料的制备及性能[J]. 材料工程, 2021, 49(4): 128-134.
[15] 戴远哲, 唐波, 张振宇, 任首龙. 碳纳米管/石蜡相变复合材料研究进展[J]. 材料工程, 2021, 49(12): 91-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn