Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (12): 93-98    DOI: 10.11868/j.issn.1001-4381.2016.001380
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
TiO2-NTs/rGO复合材料的制备及电化学性能
胡志海1, 江国栋1,2, 熊剑1,2, 朱星1, 袁颂东1,2
1. 湖北工业大学 太阳能高效利用湖北省协同创新中心, 武汉 430068;
2. 催化材料湖北省协同创新中心, 武汉 430068
Preparation and Electrochemical Performance of TiO2-NTs/rGO Composite
HU Zhi-hai1, JIANG Guo-dong1,2, XIONG Jian1,2, ZHU Xing1, YUAN Song-dong1,2
1. Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, China;
2. The Synergistic Innovation Center of Catalysis Materials of Hubei Province, Wuhan 430068, China
全文: PDF(3193 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过碱液水热法制备TiO2纳米管(TiO2-NTs)前驱体,并将其与氧化石墨烯复合得到二氧化钛纳米管/还原氧化石墨烯(TiO2-NTs/rGO)复合材料。利用X射线衍射仪(XRD),透射电子显微镜(TEM),电化学测试等分析技术对复合物进行表征。结果表明:复合物中TiO2-NTs晶相为B型(TiO2(B)),其管径约为25~30nm;与单纯TiO2-NTs相比,石墨烯负载的TiO2-NTs的倍率性能和循环性能都得到显著改善,在放电倍率为1C(335mA/g)时,TiO2-NTs/rGO和TiO2-NTs首次放电容量分别为258.5mAh/g和214.9mAh/g;电化学阻抗谱测试显示,复合材料的电荷转移电阻明显小于纯相TiO2-NTs。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡志海
江国栋
熊剑
朱星
袁颂东
关键词 TiO2(B)纳米管石墨烯电化学    
Abstract:The precursor of titanium dioxide nanotubes(TiO2-NTs) was obtained by alkaline hydrothermal approach, which was supported by graphene oxide to form titanium dioxide nanotubes/reduced graphene oxide composite(TiO2-NTs/rGO). The composite was characterized by X-ray diffraction(XRD), transmission electron microscope (TEM) and electrochemical measurements. The results show that the crystalline phase of TiO2-NTs in composite is TiO2(B) with diameter of about 25-30nm. Compared with pure TiO2-NTs,the rate performance and cycle life of composite are improved remarkablely by loading on graphene. When discharged at the rate of 1C(335mA/g),the initial discharge capacity of TiO2-NTs/rGO and TiO2-NTs are 258.5mAh/g and 214.9mAh/g, respectively. The charge transfer resistance of composite is smaller than pure TiO2-NTs characterized by electrochemical impedance spectroscopy.
Key wordsTiO2(B)    nanotube    graphene    electrochemistry
收稿日期: 2016-11-23      出版日期: 2017-12-19
中图分类号:  TB332  
通讯作者: 袁颂东(1967-),男,博士,教授,研究方向为储能材料,联系地址:湖北省武汉市洪山区湖北工业大学太阳能高效利用湖北省协同创新中心(430070),E-mail:yuansd2001@163.com     E-mail: yuansd2001@163.com
引用本文:   
胡志海, 江国栋, 熊剑, 朱星, 袁颂东. TiO2-NTs/rGO复合材料的制备及电化学性能[J]. 材料工程, 2017, 45(12): 93-98.
HU Zhi-hai, JIANG Guo-dong, XIONG Jian, ZHU Xing, YUAN Song-dong. Preparation and Electrochemical Performance of TiO2-NTs/rGO Composite. Journal of Materials Engineering, 2017, 45(12): 93-98.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001380      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/93
[1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657.
[2] LIU C, LI F, MA L P, et al. Advanced materials for energy storage[J]. Advanced materials E,2010, 22(8):28-62.
[3] DYLLA A G, HENKELMAN G, STEVENSON K J. Lithium insertion in nanostructured TiO2(B) architectures[J]. Accounts of Chemical Research, 2013, 46(5):1104-1112.
[4] ETACHERI V, YOUREY J E, BARTLETT B M. Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries[J]. ACS Nano, 2014, 8(2):1491-1499.
[5] PARK S J, KIM H, KIM Y J, et al. Preparation of carbon-coated TiO2 nanostructures for lithium-ion batteries[J]. Electrochimica Acta, 2011, 56(15):5355-5362.
[6] TANG Y, ZHANG Y, LI W, et al. Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chemical Society Reviews, 2015, 44(17):5926-5940.
[7] 杨程, 陈宇滨, 田俊鹏, 等. 功能化石墨烯的制备及应用研究进展[J]. 航空材料学报, 2016, 36(3):40-56. YANG C, CHEN Y B, TIAN J P, et al. Development in preparation and application of graphene functionalization[J]. Journal of Aeronautical Materials, 2016, 36(3):40-56.
[8] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339-1339.
[9] LIU H, CAO K, XU X, et al. Ultrasmall TiO2 nanoparticles in situ growth on graphene hybrid as superior anode material for sodium/lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(21):11239-11245.
[10] ZHEN M, GUO S, GAO G, et al. TiO2-B nanorods on reduced graphene oxide as anode materials for Li ion batteries[J]. Chemical Communications, 2015, 51(3):507-510.
[11] CAO H, LI B, ZHANG J, et al. Synthesis and superior anode performance of TiO2@reduced graphene oxide nanocomposites for lithium ion batteries[J]. Journal of Materials Chemistry, 2012, 22(19):9759-9766.
[12] SHEN T, ZHOU X, CAO H, et al. TiO2(B)-CNT-graphene ternary composite anode material for lithium ion batteries[J]. RSC Advances, 2015, 5(29):22449-22454.
[13] LAN T, DOU J, XIE F, et al. Ultrathin TiO2-B nanowires with enhanced electrochemical performance for Li-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(18):10038-10044.
[14] OLSON C L, NELSON J, ISLAM M S. Defect chemistry, surface structures, and lithium insertion in anatase TiO2[J]. The Journal of Physical Chemistry B, 2006, 110(20):9995-10001.
[15] ZHANG Y, FU Q, XU Q, et al. Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries[J]. Nanoscale, 2015, 7(28):12215-12224.
[16] OSAKA T, MOMMA T, MUKOYAMA D, et al. Proposal of novel equivalent circuit for electrochemical impedance analysis of commercially available lithium ion battery[J]. Journal of Power Sources, 2012, 205(14):483-486.
[17] OSAKA T, NAKADE S, RAJAM KI M, et al. Influence of capacity fading on commercial lithium-ion battery impedance[J]. Journal of Power Sources, 2003, 119/121:929-933.
[18] SEKI S, KIHIRA N, MITA Y, et al. AC Impedance study of high-power lithium-ion secondary batteries-effect of battery size[J]. Journal of The Electrochemical Society, 2011, 158(2):A163-A166.
[19] DENG Z, ZHANG Z, LAI Y, et al. Electrochemical impedance spectroscopy study of a lithium/sulfur battery:modeling and analysis of capacity fading[J]. Journal of the Electrochemical Society, 2013, 160(4):A553-A558.
[20] ZHUANG Q C, QIU X Y, XU S D, et al. Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Progress in Chemistry, 2010, 22(6):1044-1057.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[3] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[4] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[5] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[6] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[7] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[8] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[9] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[10] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[11] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[12] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[13] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[14] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[15] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn