Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (2): 73-77    DOI: 10.11868/j.issn.1001-4381.2017.000771
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Nb-Si基合金表面Mo-Si-B涂层制备及抗氧化性能
庞洁1, 周春根2
1. 中国航发北京航空材料研究院 航空材料先进腐蚀与防护航空 科技重点实验室, 北京 100095;
2. 北京航空航天大学 材料科学与工程学院, 北京 100191
Preparation and Oxidation Resistance of Mo-Si-B Coating on Nb-Si Based Alloy Surface
PANG Jie1, ZHOU Chun-gen2
1. Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(1726 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为提高Nb-Si合金的抗高温氧化性能,在其表面制备Mo-Si-B涂层。通过Thermo-Calc计算的方法,从热力学角度分析NaF和AlF3两种激活剂对Si-B二元共渗的影响。结果表明:以NaF为激活剂时可以实现Si-B的二元共渗,而以AlF3为激活剂时,难以实现Si-B的二元共渗。通过爆炸喷涂结合包埋渗的方法在Nb-Si合金表面成功制备Mo-Si-B涂层,涂层主要由有弥散硼化物分布的MoSi2外层和未反应的Mo内层构成。涂层在1250℃氧化100h后涂层的氧化增重仅为1.52mg/cm2,良好的抗高温氧化性能是由于涂层在高温氧化过程中形成了一层具有保护性的硼硅酸盐层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞洁
周春根
关键词 Nb-Si合金Mo-Si-B涂层激活剂包埋渗氧化    
Abstract:Mo-Si-B coating was prepared on Nb-Si alloys to improve the high-temperature oxidation. The influence of the halide activators (NaF and AlF3) on Si-B co-depositing to obtain Mo-Si-B coating on Nb-Si alloys was analyzed by thermochemical calculations. The results show that NaF proves to be more suitable than AlF3 to co-deposit Si and B. Then Mo-Si-B can be coated on Nb-Si based alloys using detonation gun spraying of Mo followed by Si and B co-deposition. The fabricated coatings consist of outer MoSi2 layer with fine boride phase and inner unreacted Mo layer. The mass gain of the Mo-Si-B coating is 1.52mg/cm2 after oxidation at 1250℃ for 100h. The good oxidation resistance results in a protective borosilicate scale formed on the coating.
Key wordsNb-Si alloy    Mo-Si-B coating    activator    pack cementation    oxidation
收稿日期: 2017-06-20      出版日期: 2018-02-01
中图分类号:  TG174.4  
通讯作者: 周春根(1964-),男,教授,博士,研究方向为高温结构材料的高温腐蚀与防护,联系地址:北京航空航天大学新主楼D337(100191),cgzhou@buaa.edu.cn     E-mail: cgzhou@buaa.edu.cn
引用本文:   
庞洁, 周春根. Nb-Si基合金表面Mo-Si-B涂层制备及抗氧化性能[J]. 材料工程, 2018, 46(2): 73-77.
PANG Jie, ZHOU Chun-gen. Preparation and Oxidation Resistance of Mo-Si-B Coating on Nb-Si Based Alloy Surface. Journal of Materials Engineering, 2018, 46(2): 73-77.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000771      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/73
[1] BEWLAY B P, JACKSON M R, ZHAO J C, et al. A review of very high temperature Nb-silicide-based composites[J]. Metall Mater Trans:A, 2003,34(10):2043-2052.
[2] 牟仁德,申造宇,王占考. Nb/Nb5Si3微叠层材料及其制备技术[J]. 航空材料学报,2016,36(3):124-131. MU R D, SHEN Z Y, WANG Z K.Characteristics and preparation technologies of Nb/Nb5Si3 microlaminate[J]. Journal of Aeronautical Materials, 2016, 36(3):124-131.
[3] 郭丰伟,康永旺,肖程波. 稀土元素(La,Sm,Tb)合金化铌硅材料显微组织及室温断裂韧度[J]. 材料工程,2016,44(10):8-16. GUO F W, KANG Y W, XIAO C B. Microstructure and room temperature fracture toughness of Nb-Si materials alloyed by rare earth elements (La,Sm,Tb)[J]. Journal of Materials Engineering, 2016, 44(10):8-16.
[4] 朱祖芳. 有色金属的耐腐蚀性及其应用[M].北京:化学工业出版社, 1995. ZHU Z F. Corrosion resistance and the applications of the non-ferrous metal[M]. Beijing:Chemical Industry Press, 1995.
[5] JIE G, PANOS T, SHAO G S. A thermo-gravimetric and microstructural study of the oxidation of Nbss/Nb5Si3-based in situ composites with Sn addition[J]. Intermetallics, 2007, 15(3):270-281.
[6] ZELENITSAS K, TASKIROPOULOS P. Effect of Al, Cr and Ta addition on the oxidation behaviour of Nb-Ti-Si in situ composites at 800℃[J]. Materials Science and Engineering:A, 2006, 416(1/2):269-280.
[7] 赵群,于永泗. 铌基合金的抗高温氧化性研究[J]. 材料导报,2003,17(2):29-31. ZHAO Q, YU Y S. Research on Nb-based alloys' high temperature oxidation resistance[J]. Materials Review, 2003, 17(2):29-31.
[8] NICHOLLS J R. Advances in coating design for high performance gas turbines[J]. MRS Bulletin, 2003, 28(9):659-670.
[9] LIU Y Q, SHAO G, TASKIROPOULOS P. On the oxidation behaviour of MoSi2[J]. Intermetallics, 2001, 9(2):125-136.
[10] KNITTEL S, MATHIEU S, VILASI M. The oxidation behaviour of uniaxial hot pressed MoSi2 in air from 400 to 1400℃[J]. Intermetallics, 2011, 19(8):1207-1215.
[11] TIAN X D, GUO X P, SUN Z P, et al. Formation of B-modified MoSi2 coating on pure Mo prepared through HAPC process[J]. International Journal of Refractory Metals and Hard Materials, 2014,45:8-14.
[12] PARK J S, SAKIDJA R, PEREPEZKO J H. Coating designs for oxidation control of Mo-Si-B alloys[J]. Scripta Materialia, 2002, 46(11):765-770.
[13] SAKIDJA R, PARK J S, HAMMANN J, et al. Synthesis of oxidation resistant silicide coating on Mo-Si-B alloys[J]. Scripta Materialia, 2005, 53(6):723-728.
[14] 刘祥庆, 郭志猛, 马璨,等. 添加B对包埋渗法制备MoSi2涂层显微组织及静态抗氧化性能的影响[J]. 粉末冶金工业, 2012, 22(3):33-37. LIU X Q, GUO Z M, MA C, et al. Effect of B addition on the microstructure and static oxidation resistance of MoSi2 coating prepared by pack cementation[J]. Powder Metallurgy Industry, 2012, 22(3):33-37.
[15] RITT P, SAKIDJA R, PEREPEZKO J H. Mo-Si-B based coating for oxidation protection of SiC-C composites[J]. Surface and Coatings Technology, 2012, 206(19/20):4166-4172.
[16] LI Y L, SOBOYEJO W, RAPP R A. Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings[J]. Metallurgical and Materials Transactions:B, 1999, 30(3):495-504.
[17] GLESSON B, CHEUNG W H, COSTA W D, et al. The hot-corrosion behavior of novel co-deposited chromium-modified aluminide coatings[J]. Oxidation of Metals, 1992, 38(5/6):407-424.
[18] HE Y R, RAPP R A. Oxidation-resistant Ge-doped silicide coating on Cr-Cr2Nb alloys by pack cementation[J]. Materials Science and Engineering:A, 1997, 222(2):109-117.
[1] 杜春燕, 赵晖, 赵海涛. 纯钛表面载银微弧氧化陶瓷膜的制备及性能[J]. 材料工程, 2020, 48(8): 157-162.
[2] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[3] 王楠, 齐新, 彭思侃, 陈翔, 王晨, 戴圣龙, 燕绍九. Mn2O3/Fe2O3/少层石墨烯/硫锂硫电池正极材料的制备及其电化学性能[J]. 材料工程, 2020, 48(8): 110-118.
[4] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[5] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[6] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[7] 曾凡达, 李纲. 花状CdO微球的制备及其对高氯酸铵热分解的催化性能[J]. 材料工程, 2020, 48(6): 91-97.
[8] 唐长斌, 卢宇轩, 王飞, 黄平, 于丽花, 薛娟琴. 用于水体中有机污染物电催化降解的非贵金属氧化物阳极的研究进展[J]. 材料工程, 2020, 48(6): 62-72.
[9] 毛杰, 马景涛, 邓畅光, 邓春明, 宋进兵, 刘敏, 宋鹏. 表面粗糙度对PS-PVD YSZ陶瓷层性能的影响[J]. 材料工程, 2020, 48(5): 144-150.
[10] 邓培淼, 宁洪龙, 谢伟广, 刘贤哲, 邓宇熹, 姚日晖, 彭俊彪. 氧化亚锡薄膜晶体管的研究进展[J]. 材料工程, 2020, 48(4): 83-88.
[11] 李红玑, 王发良, 李享, 杨靖, 宋经华, 李波. 活化凹凸棒石对多级孔分子筛合成种类和孔道结构的影响[J]. 材料工程, 2020, 48(4): 158-164.
[12] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[13] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[14] 张孜文, 张康民, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 聚六亚甲基胍盐酸盐功能化中空纳米二氧化硅制备新型抗菌剂的研究[J]. 材料工程, 2020, 48(3): 40-46.
[15] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn