Please wait a minute...
材料工程  2018, Vol. 46 Issue (6): 19-26    DOI: 10.11868/j.issn.1001-4381.2016.001564
  综述 本期目录 | 过刊浏览 | 高级检索 |
何培, 姚伟志, 吕建明, 张向东
中国工程物理研究院 材料研究所, 四川 江油 621908
Evaluation of Irradiation Properties for Fusion Structural Materials
HE Pei, YAO Wei-zhi, LYU Jian-ming, ZHANG Xiang-dong
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan, China
全文: PDF(888 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对聚变堆特定的辐照条件,对离子辐照、裂变中子辐照、散裂中子辐照以及聚变辐照装置进行了比较,评述了不同装置的优势和缺点。在没有可用的14MeV中子源时,离子加速器、裂变堆、散裂中子源以及理论模拟在聚变材料辐照效应的研究中具有不可替代的作用。从离子辐照、裂变中子或散裂中子辐照获得的数据与真实聚变中子辐照结果的对应关系需要通过采用14MeV高通量中子辐照(如IFMIF)来证实。功能强大、经济性好的聚变材料辐照装置的建立及多尺度数值模拟的发展是聚变材料走向聚变堆应用的必由之路。
E-mail Alert
关键词 聚变堆结构材料离子辐照中子辐照    
Abstract:On the basis of specific irradiation conditions in fusion reactor, the advantages and limitations of the main proposed irradiation facilities including ion irradiation, fission neutron irradiation, spallation neutron irradiation and fusion neutron irradiation were compared and evaluated.Ion accelerators, fission reactors and theory and modeling are expected to continue to play an indispensable role in studying the irradiation effect of fusion materials before the 14MeV neutron source is available. The corresponding relation between irradiation data from real fusion neutron and irradiation data from ion, fission neutron or spallation neutron irradiation has to be verified by irradiation using 14MeV high flux neutron source (e.g. IFMIF). The construction of powerful, economy-efficient fusion materials irradiation facility and the development of multi-scale numerical simulation are the inevitable choices to facilitate the commercialized application of fusion materials.
Key wordsfusion reactor    structural material    ion irradiation    neutron irradiation
收稿日期: 2016-12-29      出版日期: 2018-06-14
中图分类号:  TL34  
通讯作者: 姚伟志(1983-),男,博士,工程师,主要研究聚变堆结构材料,联系地址:四川省江油市华丰新村9号(621908),     E-mail:
何培, 姚伟志, 吕建明, 张向东. 聚变堆结构材料辐照性能的评价[J]. 材料工程, 2018, 46(6): 19-26.
HE Pei, YAO Wei-zhi, LYU Jian-ming, ZHANG Xiang-dong. Evaluation of Irradiation Properties for Fusion Structural Materials. Journal of Materials Engineering, 2018, 46(6): 19-26.
链接本文:      或
[1] LV Z, CHEN H, CHEN C, et al. Preliminary neutronics design and analysis of helium cooled solid breeder blanket for CFETR[J]. Fusion Engineering and Design,2015,95:79-83.
[2] 李建刚. 托卡马克研究的现状及发展[J]. 物理,2016,45(2):88-97. LI J G.The status and progress of tokamak research[J].Physics,2016,45(2):88-97.
[3] PENG X, YE M, SONG Y, et al. Engineering conceptual design of CFETR divertor[J]. Fusion Engineering and Design,2015, 98/99:1380-1383.
[4] 李敏.中国聚变工程实验堆氦冷固态包层结构设计与热工水力分析研究[D].合肥:中国科学技术大学,2015. LI M. Structural design and thermal-hydraulic analysis research of helium cooled solid blanket for CFETR[D]. Hefei:University of Science and Technology of China,2015.
[5] TANAKA T, SHIKAMA T, NARUI M, et al. Evaluation of insulating property of ceramic materials for V/Li blanket system under fission reactor irradiation[J]. Fusion Engineering and Design,2005,75/79:933-937.
[6] JIMENEZ-REY D, MOTA F, VILA R, et al. Simulation for evaluation of the multi-ion-irradiation Laboratory of TechnoFusion facility and its relevance for fusion applications[J]. Journal of Nuclear Materials,2011,417(1/3):1352-1355.
[7] LEE E H,MANSUR L K. Fe-15Ni-13Cr austenitic stainless steels for fission and fusion reactor applications. Ⅲ phase stability during heavy ion irradiation[J]. Journal of Nuclear Materials,2000,278(1):20-29.
[8] OGOYSKI A I,SOMEYA T,SASAKI T,et al. Heavy ion beam irradiation non-uniformity in inertial fusion[J]. Physics Letters A,2003,315(5):372-377.
[9] SOMEYA T,MIYAZAWA K,KIKUCHI T,et al.Direct-indirect mixture implosion in heavy ion fusion[J].Laser and Particle Beams,2006,24(3):359-369.
[10] NABEREJNEV D G,SALVATORES M. Irradiation of structural materials in spallation neutron sources[J]. Transactions of the American Nuclear Society,2002,86:425-427.
[11] KNASTER J,CHEL S,FISCHER U,et al. IFMIF,a fusion relevant neutron source for material irradiation current status[J]. Journal of Nuclear Materials,2014,453(1/3):115-119.
[12] PEREZ M,INTEGRATED I E. The engineering design evolution of IFMIF:from CDR to EDA phase[J]. Fusion Engineering and Design,2015,96/97:325-328.
[13] TIAN K,ABOU-SENA A,ARBEITER F,et al. Overview of the IFMIF test facility design in IFMIF/EVEDA phase[J]. Fusion Engineering and Design,2015,98/99:2085-2088.
[14] MOSLANG A,ADELHELM C,HEIDINGER R. Innovative materials for energy technology[J]. International Journal of Materials Research,2008,99(10):1045-1054.
[15] ZINKLE S J,BUSBY J T. Structural materials for fission & fusion energy[J]. Materials Today,2009,12(11):12-19.
[16] MATHEW M D,VANAJA J,LAHA K,et al. Tensile and creep properties of reduced activation ferritic-martensitic steel for fusion energy application[J]. Journal of Nuclear Materials,2011,417(1/3):77-80.
[17] SHIBA K,TANIGAWA H,HIROSE T,et al. Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system[J]. Fusion Engineering and Design,2011,86(12):2895-2899.
[18] TAN L,SNEAD L L,KATOH Y. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors[J]. Journal of Nuclear Materials,2016,478:42-49.
[19] CHEN J M,CHERNOV V M,KURTZ R J,et al. Overview of the vanadium alloy researches for fusion reactors[J]. Journal of Nuclear Materials,2011,417(1/3):289-294.
[20] MUROGA T,CHEN J M,CHERNOV V M,et al. Present status of vanadium alloys for fusion applications[J]. Journal of Nuclear Materials,2014,455(1/3):263-268.
[21] NAGASAKA T,MUROGA T,FUKUMOTO K,et al. Development of fabrication technology for low activation vanadium alloys as fusion blanket structural materials[J]. Nuclear Fusion,2006,46(5):618-625.
[22] IVEKOVIC A,NOVAK S,DRAZIC G,et al. Current status and prospects of SiCf/SiC for fusion structural applications[J]. Journal of the European Ceramic Society,2013,33(10):1577-1589.
[23] JONES R H,GIANCARLI L,HASEGAWA A,et al. Promise and challenges of SiCf/SiC composites for fusion energy applications[J]. Journal of Nuclear Materials,2002,307:1057-1072.
[24] RICCARDI B,GIANCARLI L,HASEGAWA A,et al. Issues and advances in SiCf/SiC composites development for fusion reactors[J]. Journal of Nuclear Materials,2004,329:56-65.
[25] 王志光. 利用高能离子模拟研究反应堆结构材料中的辐照效应[J]. 原子核物理评论,2006,23(2):155-160. WANG Z G.Simulation of radiation effects in structural materials of reactors using high-energy heavy-ion irradiations[J].Nuclear Physics Review,2006,23(2):155-160.
[26] ZINKLE S J,MOSLANG A. Evaluation of irradiation facility options for fusion materials research and development[J]. Fusion Engineering and Design,2013,88(6/8):472-482.
[27] 肖厦子,宋定坤,楚海建,等. 金属材料力学性能的辐照硬化效应[J]. 力学进展,2015,45:141-178. XIAO X Z,SONG D K,CHU H J,et al. Irradiation hardening for metallic materials[J].Advances in Mechanics,2015,45:141-178.
[28] 郁金南.材料辐照效应[M].北京:化学工业出版社,2007:155-157. YU J N. Irradiation effect of reactor material[M].Beijing:Chemical Industry Press,2007:155-157.
[29] NORGETT M J,ROBINSON M T,TORRENS I M. Proposed method of calculating displacement dose-rates[J]. Nuclear Engineering and Design,1975,33(1):50-54.
[30] STOLLER R E,GREENWOOD L R. Subcascade formation in displacement cascade simulations:implications for fusion reactor materials1[J].Journal of Nuclear Materials,1999,271/272:57-62.
[31] BRIMBAL D,MESLIN E,HENRY J,et al. He and Cr effects on radiation damage formation in ion-irradiated pure iron and Fe-5.40 wt.% Cr:a transmission electron microscopy study[J]. Acta Materialia,2013,61(13):4757-4764.
[32] VLADIMIROV P,MOSLANG A. Comparison of material irradiation conditions for fusion,spallation,stripping and fission neutron sources[J]. Journal of Nuclear Materials,2004,329/333:233-237.
[33] WECHSLER M S,RAMAVARAPU R,DAUGHERTY E L,et al. Calculation of displacement,gas,and transmutation production in stainless-steel irradiated with spallation neutrons[J]. Journal of Nuclear Materials,1994,212/215:1678-1681.
[34] PITCHER E J,KELSEY C T,MALOY S A. The suitability of the materials test station for fusion materials irradiations[J]. Fusion Science and Technology,2012,62(1):289-294.
[35] MANSUR L K. Theory and experimental background on dimensional changes in irradiated alloys[J]. Journal of Nuclear Materials,1994,216:97-123.
[36] ODETTE G R,ALINGER M J,WIRTH B D. Recent developments in irradiation-resistant steels[J]. Annual Review of Materials Research,2008,38:471-503.
[37] TRINKAUS H,SINGH B N. Helium accumulation in metals during irradiation-where do we stand?[J]. Journal of Nuclear Materials,2003,323(2/3):229-242.
[38] KONDO M,SHIBATA T,KAWANOWA H,et al. Influence of helium-ion bombardment on the surface properties of pure and ammonia-adsorbed water thin films[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2005,232(1/4):140-145.
[39] LINDAU R,MOSLANG A,PREININGER D,et al. Influence of helium on impact properties of reduced-activation ferritic martensitic Cr-steels[J]. Journal of Nuclear Materials,1999,271:450-454.
[40] MANSUR L K,LEE E H,MAZIASZ P J,et al. Control of helium effects in irradiated materials based on theory and experiment[J]. Journal of Nuclear Materials,1986,141/143:633-646.
[41] MAZEY D J. Fundamental aspects of high-energy ion-beam simulation techniques and their relevance to fusion materials studies[J]. Journal of Nuclear Materials,1990,174(2/3):196-209.
[42] TROCELLIER P,SERRUYS Y,MIRO S,et al. Application of multi-irradiation facilities[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2008,266(12/13):3178-3181.
[43] WAS G S.Challenges to the use of ion irradiation for emulating reactor irradiation[J]. Journal of Materials Research,2015,30(9):1158-1182.
[44] ULLMAIER H. The influence of helium on the bulk properties of fusion-reactor structural-materials[J]. Nuclear Fusion,1984,24(8):1039-1083.
[45] FARRELL K. Experimental effects of helium on cavity formation during irradiation-a review[J]. Radiation Effects and Defects in Solids,1980,53(3/4):175-194.
[46] LUCAS G E,ODETTE G R,SOKOLOV M,et al. Recent progress in small specimen test technology[J]. Journal of Nuclear Materials,2002,307/311:1600-1608.
[47] THOMS K R,HICKS G R,MONTGOMERY B H,et al. HFIR irradiation facilities improvements-completion of the HIFI project[J]. Journal of Nuclear Materials,1988,155/157:1340-1345.
[48] MANSUR L K,ROWCLIFFE A F,GROSSBECK M L,et al. Isotopic alloying to tailor helium production rates in mixed-spectrum reactors[J]. Journal of Nuclear Materials,1986,139(3):228-236.
[49] YAMAMOTO T,ODETTE G R,MIAO P,et al. Helium effects on microstructural evolution in tempered martensitic steels:in situ helium implanter studies in HFIR[J]. Journal of Nuclear Materials,2009,386/388:338-341.
[50] ODETTE G R. New approaches to simulating fusion damage in fission reactors[J]. Journal of Nuclear Materials,1986,141/143:1011-1017.
[51] GAGANIDZE E,PETERSEN C,AKTAA J. Study of helium embrittlement in boron doped EUROFER97 steels[J]. Journal of Nuclear Materials,2009,386/388:349-352.
[52] KLUEH R L,HASHIMOTO N,SOKOLOV M A,et al. Mechanical properties of neutron-irradiated nickel-containing martensitic steels:Ⅱ review and analysis of helium-effects studies[J]. Journal of Nuclear Materials,2006,357(1/3):169-182.
[53] ROWCLIFFE A F,HISHINUMA A,GROSSBECK M L,et al. Radiation effects at fusion reactor He:dpa ratios:overview of US/Japan spectrally tailored experiments[J]. Journal of Nuclear Materials,1991,179/181:125-129.
[54] SMITH D L,MATSUI H,GREENWOOD L,et al. Experimental method for investigating helium effects in irradiated vanadium[J]. Journal of Nuclear Materials,1988,155/157:1359-1363.
[55] MALOY S A,JAMES M R,WILLCUTT G,et al. The mechanical properties of 316L/304L stainless steels,Alloy 718 and Mod 9Cr-1Mo after irradiation in a spallation environment[J]. Journal of Nuclear Materials,2001,296(1/3):119-128.
[56] SENCER B H,MALOY S A,HAMILTON M L,et al. Microstructural evolution of both as-irradiated and subsequently deformed microstructures of 316L stainless steel irradiated at 30-160℃ at LANSCE[J]. Journal of Nuclear Materials,2005,345(2/3):136-145.
[57] GUSSEV M N,McCLINTOCK D A,GARNER F A. Analysis of structure and deformation behavior of AISI 316L tensile specimens from the second operational target module at the Spallation Neutron Source[J]. Journal of Nuclear Materials,2016,468:210-220.
[58] SATO K,IKEMURA K,KRSJAK V,et al. Defect structures of F82H irradiated at SINQ using positron annihilation spectroscopy[J]. Journal of Nuclear Materials,2016,468:281-284.
[59] DAI Y,FOUCHER Y,JAMES M R,et al. Neutronics calculation,dosimetry analysis and gas measurements of the first SINQ target irradiation experiment,STIP-Ⅰ[J]. Journal of Nuclear Materials,2003,318:167-175.
[60] ZANINI L,DEMENTJEV S,GRÖESCHEL F,et al. Experience from the post-test analysis of MEGAPIE[J]. Journal of Nuclear Materials,2011,415(3):367-377.
[61] ABDERRAHIM H A,BAETEN P,De BRUYN D,et al. MYRRHA-a multi-purpose fast spectrum research reactor[J]. Energy Conversion and Management,2012,63:4-10.
[62] CASTELLITI D,LOMONACO G. A preliminary stability analysis of MYRRHA Primary Heat Exchanger two-phase tube bundle[J]. Nuclear Engineering and Design,2016,305:179-190.
[63] ÇELIK Y,STANKOVSKIY A,ENGELEN J,et al. Radiation source terms of MYRRHA reactor components and equipment[J]. International Journal of Hydrogen Energy,2016,41(17):7213-7220.
[64] PITCHER E J. The materials test station:a fast-spectrum irradiation facility[J]. Journal of Nuclear Materials,2008,377(1):17-20.
[65] TONG Z,DAI Y. The microstructure and tensile properties of ferritic/martensitic steels T91,Eurofer-97 and F82H irradiated up to 20 dpa in STIP-Ⅲ[J]. Journal of Nuclear Materials,2010,398(1/3):43-48.
[66] GARIN P,DIEGELE E,HEIDINGER R,et al. IFMIF specifications from the users point of view[J]. Fusion Engineering and Design,2011,86(6/8):611-614.
[67] NODA K,EHRLICH K,JITSUKAWA S,et al. Users' requirements for IFMIF[J]. Journal of Nuclear Materials,1998,258/263:97-105.
[68] MOSLANG A. IFMIF:the intense neutron source to qualify materials for fusion reactors[J]. Comptes Rendus Physique,2008,9(3/4):457-468.
[69] SAMARAS M,VICTORIA M. Modelling in nuclear energy environments[J]. Materials Today,2008,11(12):54-62.
[70] BECQUART C,DOMAIN C. Modeling microstructure and irradiation effects[J].metallurgical and Materials Transactions A,2011,42(4):852-870.
[71] HAO W,GENG W T. Understanding Cr segregation at the He bubble surface in Fe[J]. Journal of Physics:Condensed Matter,2012,24(9):095009.
[72] ZHANG L,ZHANG Y,GENG W T,et al.Towards theoretical connection between tensile strength of a grain boundary and segregated impurity concentration:helium in iron as an example[J]. Europhysics Letters,2012,98(1):17001.
[73] HAO W,GENG W T. Impeding effect of Ce on He bubble growth in bcc Fe[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2012,280:22-25.
[74] VINCENT E,BECQUART C,DOMAIN C. Solute interaction with point defects in α Fe during thermal ageing:a combined ab initio and atomic kinetic Monte Carlo approach[J].Journal of Nuclear Materials,2006,351(1/3):88-99.
[75] FU C,WILLAIME F. Ab initio study of helium in α-Fe:dissolution,migration,and clustering with vacancies[J]. Physical Review B,2005,72(6):064117.
[76] FU C,WILLAIME F. Interaction between helium and self-defects in α-iron from first principles[J]. Journal of Nuclear Materials,2007,367/370:244-250.
[1] 李晓敏, 吴菊英, 唐昶宇, 袁萍, 邢涛, 张凯, 梅军, 黄渝鸿. B4CP/PI聚酰亚胺复合薄膜耐高温及热中子辐照屏蔽性能研究[J]. 材料工程, 2018, 46(3): 48-54.
[2] 卢国锋, 乔生儒, 许艳. 连续纤维增强陶瓷基复合材料界面层研究进展[J]. 材料工程, 2014, 0(11): 107-112.
[3] 王建伟, 尚新春, 吕国才. bcc-Fe空位浓度对辐照损伤影响的分子动力学模拟[J]. 材料工程, 2011, 0(10): 15-18.
[4] 房若宇, 黄建国. 人工化石方法:制备复杂形貌纳米材料的捷径[J]. 材料工程, 2008, 0(10): 191-196.
[5] 李红梅, 杨武, 蔡珣. 304奥氏体不锈钢离子辐照后超显微硬度和微结构变化[J]. 材料工程, 2005, 0(7): 11-14.
[6] 肖程波, 韩雅芳, 张行安. 定向凝固Ni3Al基高温结构材料IC6A合金的研究[J]. 材料工程, 2001, 0(6): 3-6.
[7] 陈孟成, 霍晓, 高阳, 李建平, 李伟光. 高温涂层的研究和发展[J]. 材料工程, 1999, 0(6): 40-42,45.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持