Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (8): 113-119    DOI: 10.11868/j.issn.1001-4381.2016.000449
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
两相区淬火对7Ni钢微观组织和力学性能的影响
许立雄1, 武会宾1,2, 牟丹1
1. 北京科技大学 钢铁共性技术协同创新中心, 北京 100083;
2. 北京科技大学 工程技术研究院, 北京 100083
Effect of Quenching in Dual-phase Region on Microstructure and Mechanical Properties of 7Ni Steel
XU Li-xiong1, WU Hui-bin1,2, MOU Dan1
1. Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China;
2. Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3756 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用X射线衍射仪、扫描电镜和热膨胀仪,研究两相区淬火温度和保温时间对7Ni钢显微组织及力学性能的影响。基于热膨胀曲线,定量地测量了7Ni钢在淬火+两相区淬火+回火(QLT)工艺各阶段的逆转奥氏体生成量及转变速率,揭示逆转奥氏体的转变过程。结果表明:逆转奥氏体在QLT工艺中的转变依次经历了淬火保温、淬火冷却、回火保温、回火冷却四个过程。适当升高两相区淬火温度和延长保温时间,有利于回火过程中逆转奥氏体的转变,并促进其均匀分布,从而使7Ni钢强度降低,塑韧性增强。两相区淬火工艺为660℃保温30min时,7Ni钢综合力学性能达到最佳,并完全满足标准ASTM A553规定的9Ni钢的力学性能要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许立雄
武会宾
牟丹
关键词 7Ni钢两相区淬火逆转奥氏体热膨胀曲线    
Abstract:The influence of quenching temperature and holding time in dual-phase region on microstructure and mechanical properties of 7Ni steel was studied by X-ray diffractometer, scanning electron microscopy and thermal dilatometer. Based on the thermal expansion curve, the production and transformation rate of reversed austenite of 7Ni steel under each stage of the QLT treatment was quantitatively measured, and the transformation process of reversed austenite was revealed. The results indicate that the transformation of reversed austenite during QLT treatment successively goes through four stages:quenching temperature holding, quenching cooling, tempering temperature holding and tempering cooling. Appropriately improving the quenching temperature in dual-phase region and extending the holding time is beneficial to the transformation of reversed austenite during tempering, and also promotes its uniform distribution, which consequently reduces the strength and enhances the ductility as well as toughness of 7Ni steel. Under the quenching in dual-phase region treatment at 660℃ for 30min, the comprehensive mechanical properties of the 7Ni steel are the best, which completely meet the mechanical property requirements of 9Ni steel stipulated by ASTM A553.
Key words7Ni steel    quenching in dual-phase region    reversed austenite    thermal expansion curve
收稿日期: 2016-04-15      出版日期: 2018-08-17
中图分类号:  TG142.1  
通讯作者: 武会宾(1977-),男,博士,研究员,从事材料加工工艺及组织性能研究,联系地址:北京市海淀区学院路30号北京科技大学872信箱(100083),E-mail:wuhb@ustb.edu.cn     E-mail: wuhb@ustb.edu.cn
引用本文:   
许立雄, 武会宾, 牟丹. 两相区淬火对7Ni钢微观组织和力学性能的影响[J]. 材料工程, 2018, 46(8): 113-119.
XU Li-xiong, WU Hui-bin, MOU Dan. Effect of Quenching in Dual-phase Region on Microstructure and Mechanical Properties of 7Ni Steel. Journal of Materials Engineering, 2018, 46(8): 113-119.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000449      或      http://jme.biam.ac.cn/CN/Y2018/V46/I8/113
[1] 王福禄. 我国液化天然气现状及发展前景分析[J]. 低碳世界, 2014(7):233-234. WANG F L. Analysis of the current situation and development prospect of liquefied natural gas in our country[J]. Low Carbon World, 2014(7):233-234.
[2] 耿都都, 严春妍, 纳学洋, 等. LNG储罐用9Ni钢及其焊接性分析[J]. 焊管, 2015, 38(5):5-8. GENG D D, YAN C Y, NA X Y, et al. Analysis on 9Ni steel used for LNG store tank and its weldability[J]. Welded Pipe and Tube, 2015, 38(5):5-8.
[3] 战国锋, 刘继雄, 刘文斌. 低温压力容器用9Ni钢的研究现状与展望[J]. 热加工工艺, 2015, 44(14):12-15. ZHAN G F, LIU J X, LIU W B. Review and prospect on developments of 9Ni steel for low temperature pressure vessel[J]. Hot Working Technology, 2015, 44(14):12-15.
[4] TERASAKI H, MORIGUCHI K, TOMIO Y, et al. Correlation among the variant group, effective grain size, and elastic strain energy during the phase transformation in 9Ni steels[J]. Metallurgical and Materials Transactions A, 2017, 48(12):5761-5765.
[5] 谢章龙, 刘振宇, 陈俊, 等. 9Ni钢薄板的奥氏体化温度及强韧化因素分析[J]. 钢铁研究学报, 2011, 23(9):37-41. XIE Z L, LIU Z Y, CHEN J, et al. Austenitizing temperature for 9Ni steel thin plate and analysis of strengthening and toughening factors[J]. Journal of Iron and Steel Research, 2011, 23(9):37-41.
[6] 彭世广, 宋仁伯, 王威, 等. 热处理工艺对新型轻质奥氏体耐磨钢的组织与力学性能的影响[J]. 材料工程, 2016, 44(9):24-31. PENG S G, SONG R B, WANG W, et al. Effect of heat treatments on microstructure and mechanical properties of novel light-mass austenitic wear-resistant steel[J]. Journal of Materials Engineering, 2016, 44(9):24-31.
[7] ANDO R, ARIMOCHI K, KAWABATA T, et al. Development of 7% Ni-TMCP steel plate for LNG storage tanks[C]//ASME 2011 Pressure Vessels and Piping Conference. Baltimore, MD:American Society of Mechanical Engineers, 2011:37-46.
[8] WANG M, LIU Z Y, LI C G. Correlations of Ni contents, formation of reversed austenite and toughness for Ni-containing cryogenic steels[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(3):238-249.
[9] WU S J, SUN G J, MA Q S, et al. Influence of QLT treatment on microstructure and mechanical properties of a high nickel steel[J]. Journal of Materials Processing Technology, 2013, 213(1):120-128.
[10] ZHAO X Q, PAN T, WANG Q F, et al. Effect of intercritical quenching on reversed austenite formation and cryogenic toughness in QLT-processed 9% Ni steel[J]. Journal of Iron and Steel Research, International, 2007, 14(5):240-244.
[11] 杨跃辉, 武会宾, 蔡庆伍, 等. 9Ni钢中回转奥氏体的形成规律及其稳定性[J]. 材料热处理学报, 2010, 31(3):73-77. YANG Y H, WU H B, CAI Q W, et al. Formation of reversed austenite and its stability in 9Ni steel during tempering[J]. Transactions of Materials and Heat Treatment, 2010, 31(3):73-77.
[12] 周顺兵. 采用X射线衍射仪织构附件测量钢中残余奥氏体含量的方法[J]. 电工材料, 2010(3):46-48. ZHOU S B.A method of determination of retained austenite in steels using an X-ray texture goniometer[J]. Electrical Engineering Materials, 2010(3):46-48.
[13] KHODIR S, SHIBAYANAGI T, TAKAHASHI M, et al. Microstructural evolution and mechanical properties of high strength 3-9% Ni-steel alloys weld metals produced by electron beam welding[J]. Materials & Design, 2014, 60:391-400.
[14] FULTZ B,KIM J I,KIM Y H,et al.The chemical composition of precipitated austenite in 9Ni steel[J].Metallurgical and Materials Transactions A,1986,17(6):967-971.
[15] ZHAO X Q, PAN T, WANG Q F, et al. Effect of tempering temperature on microstructure and mechanical properties of steel containing Ni of 9%[J]. Journal of Iron and Steel Research, International, 2011, 18(5):47-51.
[16] 朱绪祥,刘东升.低C含7.7%Ni低温钢经两相区淬火后的组织性能[J]. 钢铁, 2013, 48(11):72-78. ZHU X X, LIU D S. Microstructure and mechanical properties of a low carbon 7.7%Ni steel subjected to intercritical quenching[J]. Iron and Steel, 2013, 48(11):72-78.
[17] 武会宾, 程莉, 蔡庆伍, 等. 调质处理对9Ni钢逆转奥氏体形成的影响[J]. 热加工工艺, 2011, 40(14):146-150. WU H B, CHENG L, CAI Q W, et al. Influence of quenching and tempering on formation of reversed austenite in 9Ni steel[J]. Hot Working Technology, 2011, 40(14):146-150.
[18] CHEN S H, ZHAO M J, LI X Y, et al. Compression stability of reversed austenite in 9Ni steel[J]. Journal of Materials Science & Technology, 2012, 28(6):558-561.
[19] 江陆, 孙新军, 李昭东, 等. 两相区回火温度对Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响[J]. 材料工程, 2015, 43(5):1-7. JIANG L, SUN X J, LI Z D, et al. Effects of intercritical tempering temperature on formation of metastable austenite and mechanical properties of Mn-Mo series microalloyed steel[J]. Journal of Materials Engineering, 2015, 43(5):1-7.
[1] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[2] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
[3] 马龙腾, 王彦峰, 狄国标, 杨永达, 黄乐庆, 李春智. Q460FRW耐火钢的组织稳定性[J]. 材料工程, 2019, 47(10): 82-89.
[4] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[5] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[6] 倪永恒, 朱有利, 侯帅. 超声冲击处理时间对17CrNiMo6钢表层组织细化与性能的影响[J]. 材料工程, 2018, 46(11): 155-160.
[7] 李志超, 党宁, 江海涛, 夏振海. 含Cu取向硅钢中第二相粒子析出演变行为研究[J]. 材料工程, 2017, 45(12): 10-16.
[8] 马超, 罗海文. GCr15轴承钢热处理过程中碳化物的析出与演变行为[J]. 材料工程, 2017, 45(6): 97-103.
[9] 孙强, 李志超, 米振莉, 党宁. CGO硅钢初次再结晶组织及织构演变规律[J]. 材料工程, 2016, 44(9): 38-43.
[10] 李永德, 张莉莉, 张冲, 贺莹莹. SUJ2轴承钢超长寿命疲劳行为研究[J]. 材料工程, 2016, 44(8): 85-92.
[11] 党宁, 李志超, 唐荻, 张文康, 孙强. 0.20mm CGO硅钢高温退火Goss晶粒起源及异常长大行为研究[J]. 材料工程, 2016, 44(5): 1-7.
[12] 王小江, 孙新军, 李昭东, 张正延, 雍岐龙, 李员妹. 卷取温度对高Nb微合金钢组织、力学性能及第二相析出的影响[J]. 材料工程, 2016, 44(2): 35-42.
[13] 王建亭, 周荣生, 王明杰, 朱定一. 形变温度对Fe-20Mn-3Cu-1.3C TWIP钢拉伸变形行为的影响[J]. 材料工程, 2016, 44(1): 11-18.
[14] 吕世泉, 何国球, 沈月, 田丹丹, 刘晓山, 林国斌, 任敬东, 胡杰. 菱形加载路径下35CrMoA钢的微动疲劳行为[J]. 材料工程, 2016, 44(1): 96-102.
[15] 张胜男, 程兴旺. AerMet100超高强度钢的动态力学性能研究[J]. 材料工程, 2015, 43(12): 24-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn