Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (8): 120-126    DOI: 10.11868/j.issn.1001-4381.2017.000444
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响
杨胶溪1,*(), 贾无名1, 王欣1, 文强1, 张晏玮2, 柏广海2, 王荣山2
1 北京工业大学 激光工程研究院, 北京 100124
2 苏州热工研究院有限公司, 江苏 苏州 215004
Effect of Laser Melting Treatment on Microstructure and Properties of Zr-1Nb Nuclear Fuel Cladding
Jiao-xi YANG1,*(), Wu-ming JIA1, Xin WANG1, Qiang WEN1, Yan-wei ZHANG2, Guang-hai BAI2, Rong-shan WANG2
1 Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
2 Suzhou Nuclear Power Research Institute, Suzhou 215004, Jiangsu, China
全文: PDF(3509 KB)   HTML ( 20 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为了提高核燃料包壳Zr-1Nb合金的抗高温腐蚀性能,采用激光熔凝+真空退火热处理工艺对其进行表面处理。借助扫描电子显微镜(SEM)、X射线衍射(XRD)、拉曼等检测手段对锆管组织、成分及物相结构进行分析,使用探针式表面轮廓仪、显微硬度计和高压反应釜等仪器表征锆合金的粗糙度、硬度和耐蚀性。结果表明:经激光熔凝处理的锆管表面平整度提高;激光熔凝层物相主要由α-Zr和少量的m-ZrO2组成,且后续真空退火热处理没有改变锆合金的相组成;较高功率条件下进行激光熔凝显著降低锆管的高温耐蚀性能,而在较低功率进行激光熔凝工艺且辅助后续热处理的条件下,可以显著提高锆管的高温耐蚀性能;经激光熔凝处理后锆合金的显微硬度升高50~80HV0.1,热处理后硬度相应减小,但仍高于原始样品。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨胶溪
贾无名
王欣
文强
张晏玮
柏广海
王荣山
关键词 激光熔凝真空退火热处理Zr-1Nb合金高温耐蚀性能    
Abstract

The Zr-1Nb alloy was treated by laser melting and vacuum annealing in order to improve the high temperature corrosion resistance. The morphology of the melting layer was observed by scanning electron microscopy, phase compositions and quantities were determined by X-ray diffraction and Raman; surface roughness was determined by profile meter; and hardness was measured by the micro-hardness tester. In order to characterize the corrosion resistance, autoclave experiments were conducted for 70 days in an aqueous steam condition of 360℃ under 18.6MPa in 0.01mol/L LiOH solutions. The results show that the surface roughness of Zr-1Nb cladding tubes is improved by laser melting; the laser melted layer is mainly composed of α-Zr phase and a small amount of m-ZrO2, and the phase composition of laser melted layer does not change after heat-treatment; under high power condition, laser melting can reduce the high temperature corrosion resistance of Zr-1Nb alloy. However, the high temperature corrosion resistance of Zr-1Nb alloy can be improved significantly under the condition of low power laser melting and auxiliary heat treatment process. By laser melting treatment, microhardness of zirconium alloy can be increased by 50-80HV0.1. And after heat treatment, microhardness of zirconium alloy is decreased compared with the laser melted sample, but it is still higher than the origin sample.

Key wordslaser melting    vacuum annealing heat-treatment    Zr-1Nb alloy    high temperature corrosion resistance
收稿日期: 2017-04-14      出版日期: 2018-08-17
中图分类号:  TG174.44  
通讯作者: 杨胶溪     E-mail: yangjiaoxi@bjut.edu.cn
作者简介: 杨胶溪(1971-), 男, 副研究员, 博士, 研究方向:从事材料表面改性及3D打印方面的研究, 联系地址:北京市朝阳区平乐园100号北京工业大学激光工程研究院(100124), E-mail:yangjiaoxi@bjut.edu.cn
引用本文:   
杨胶溪, 贾无名, 王欣, 文强, 张晏玮, 柏广海, 王荣山. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程, 2018, 46(8): 120-126.
Jiao-xi YANG, Wu-ming JIA, Xin WANG, Qiang WEN, Yan-wei ZHANG, Guang-hai BAI, Rong-shan WANG. Effect of Laser Melting Treatment on Microstructure and Properties of Zr-1Nb Nuclear Fuel Cladding. Journal of Materials Engineering, 2018, 46(8): 120-126.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000444      或      http://jme.biam.ac.cn/CN/Y2018/V46/I8/120
Fig.1  热处理时间-温度曲线
Sample Laser power/W Scan speed/(mm·min-1) Shield gas flow/(L·min-1) Annealing temperature/℃
ZrNb-1# - - - -
ZrNb-2# 420 300 15 -
ZrNb-3# 480 300 15 -
ZrNb-4# 540 300 15 -
ZrNb-5# 150 200 15 -
ZrNb-6# 150 300 15 -
ZrNb-5A# 150 200 15 475
ZrNb-6A# 150 300 15 475
Table 1  激光熔凝和热处理工艺参数
Fig.2  激光熔凝锆管
Fig.3  典型样品的表面粗糙度曲线
(a)ZrNb-1#原始样品;(b)ZrNb-5#熔凝样品;(c)ZrNb-6#熔凝样品;(d)ZrNb-5A#热处理样品;(e)ZrNb-6A#热处理样品
Sample Surface roughness/nm
ZrNb-1# 327.20
ZrNb-5# 228.29
ZrNb-6# 226.04
ZrNb-5A# 202.36
ZrNb-6A# 215.44
Table 2  典型样品的表面粗糙度
Fig.4  不同工艺参数条件下熔凝层微观形貌特征
(a)ZrNb-2#,420W,300mm/min;(b)ZrNb-4#,540W,300mm/min;(c)ZrNb-5#,150W,200mm/min;(d)ZrNb-6#,150W,300mm/min
Fig.5  典型样品的XRD图谱
Fig.6  腐蚀后的激光熔凝锆管(360℃,18.6MPa,0.01mol/L LiOH溶液)
Fig.7  ZrNb-4#样品腐蚀70天后拉曼图谱
Fig.8  锆合金氧化膜的示意图[18]
Fig.9  典型样品的高温腐蚀时间-增重曲线
Fig.10  典型样品的显微硬度曲线
1 范清松, 杨忠波, 周军, 等. Zr-Sn-Nb-Fe系锆合金中第二相粒子研究进展[J]. 材料工程, 2016, 44 (4): 110- 118.
doi: 10.11868/j.issn.1001-4381.2016.04.017
1 FAN Q X , YANG Z B , ZHOU J , et al. Research progress of second phase particles on Zr-Sn-Nb-Fe zirconium alloys[J]. Journal of Materials Engineering, 2016, 44 (4): 110- 118.
doi: 10.11868/j.issn.1001-4381.2016.04.017
2 CHAO L , WEI J . A novel extension of chord length sampling method for TRISO-type fueled reactor applications[J]. Annals of Nuclear Energy, 2014, 71 (9): 440- 450.
3 薛文斌, 金乾, 朱庆振, 等. 锆合金表面微弧氧化陶瓷膜制备及特性分析[J]. 材料热处理学报, 2010, 31 (2): 119- 122.
3 XUE W B , JIN Q , ZHU Q Z , et al. Preparation and properties of ceramic coating formed by microarc oxidation on zirconium alloy[J]. Transactions of Materials and Heat Treatment, 2010, 31 (2): 119- 122.
4 LI X Y , AKIYAMA E , HABAZAKI H , et al. An XPS study of passive films on corrosion-resistant Cr-Zr alloys prepared by sputter deposition[J]. Corrosion Science, 1997, 39 (8): 1365- 1380.
doi: 10.1016/S0010-938X(97)00035-8
5 WAN Q , BAI X , LIU X . Influence of nitrogen ion implantation on the aqueous corrosion behavior of zircaloy-4[J]. Vacuum, 2005, 79 (1): 37- 44.
6 MORDYUK B N , KARASEVSKAYA O P , PROKOPENKO G I . Structurally induced enhancement in corrosion resistance of Zr-2.5% Nb alloy in saline solution by applying ultrasonic impact peening[J]. Materials Science and Engineering:A, 2013, 559 (1): 453- 461.
7 HA J Y , TSUTSUMI Y , DOI H , et al. Enhancement of calcium phosphate formation on zirconium by micro-arc oxidation and chemical treatments[J]. Surface and Coatings Technology, 2011, 205 (21): 4948- 4955.
8 REITZ W , RAWERS J . Effect of laser surface melted zirconium alloys on microstructure and corrosion resistance[J]. Journal of Materials Science, 1992, 27 (9): 2437- 2443.
doi: 10.1007/BF01105055
9 BELL B D C , MURPHY S T , BURR P A , et al. The influence of alloying elements on the corrosion of Zr alloys[J]. Corrosion Science, 2016, 105, 36- 43.
doi: 10.1016/j.corsci.2015.12.022
10 LEE S J , PARK C J , LIM Y S , et al. Influences of laser surface alloying with niobium(Nb)on the corrosion resistance of Zircaloy-4[J]. Journal of Nuclear Materials, 2003, 321 (2): 177- 183.
11 YEOM H , HAUCH B , CAO G , et al. Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate[J]. Thin Solid Films, 2016, 615, 202- 209.
doi: 10.1016/j.tsf.2016.07.024
12 陈鑫, 李中奎, 周军, 等. 热处理制度对锆合金耐腐蚀性能的影响概述[J]. 热加工工艺, 2015, 44 (4): 5- 7.
12 CHEN X , LI Z K , ZHOU J , et al. Summarizing for effect of heat treatment on corrosion resistance of zirconium alloy[J]. Hot Working Technology, 2015, 44 (4): 5- 7.
13 YANG J , WANG X , WEN Q , et al. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr-1Nb alloy[J]. Journal of Nuclear Materials, 2015, 467 (1): 186- 193.
14 杨忠波, 赵文金, 程竹青, 等. Nb含量对Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53 (1): 47- 56.
doi: 10.11900/0412.1961.2016.00136
14 YANG Z B , ZHAO W J , CHENG Z Q , et al. Effect of Nb content on the corrosion resistance of Zr-xNb-0.4Sn-0.3Fe alloys[J]. Acta Metallurgica Sinica, 2017, 53 (1): 47- 56.
doi: 10.11900/0412.1961.2016.00136
15 YILBAS B S , AKHTAR S S , KARATAS C . Laser controlled melting of pre-treated zirconia surface[J]. Applied Surface Science, 2011, 257 (15): 6912- 6918.
doi: 10.1016/j.apsusc.2011.03.030
16 耿迅, 刘庆冬, 刘文庆, 等. Zr-1Sn-1Nb-0.1Fe合金第二相的研究[J]. 稀有金属材料与工程, 2008, 37 (4): 717- 720.
16 GENG X , LIU Q D , LIU W Q , et al. The study in the second phase of Zr-lSn-1Nb-0.1Fe alloy[J]. Rare Metal Materials and Engineering, 2008, 37 (4): 717- 720.
17 SAMAL M K , SANYAL G , CHAKRAVARTTY J K . Investigation of failure behavior of two different types of Zircaloy clad tubes used as nuclear reactor fuel pins[J]. Engineering Failure Analysis, 2011, 18 (8): 2042- 2053.
doi: 10.1016/j.engfailanal.2011.06.009
18 LIKHANSKⅡ V V , ALIEV T N , KOLESNIK M Y , et al. Method of elastic energy minimization for evaluation of transition parameters in oxidation kinetics of Zr alloys[J]. Corrosion Science, 2012, 61 (4): 143- 147.
[1] 王露, 陈雷雷, 徐凯, 娄明, 杜玉洁, 毛勇, 常可可. 前过渡族元素X对TiAlXN涂层结构与性能的作用[J]. 材料工程, 2022, 50(7): 69-79.
[2] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.
[3] 唐全, 张锁德, 徐民, 王建强. 陶瓷颗粒添加对热喷涂不锈钢涂层耐蚀性的影响[J]. 材料工程, 2021, 49(11): 125-135.
[4] 王港, 刘秀波, 刘一帆, 祝杨, 欧阳春生, 孟元, 罗迎社. 304不锈钢激光熔覆Co-Ti3SiC2自润滑复合涂层微观组织与摩擦学性能[J]. 材料工程, 2021, 49(11): 105-115.
[5] 韩锡正, 费敬银, 赵利娜, 燕宝强, 王俊. 完全非晶态Ni-B合金镀层的电沉积制备[J]. 材料工程, 2021, 49(5): 171-177.
[6] 王勉, 刘秀波, 欧阳春生, 罗迎社, 陈德强. 304不锈钢激光原位合成自润滑涂层的宽温域摩擦学性能[J]. 材料工程, 2021, 49(1): 133-143.
[7] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[8] 郭琪琪, 费敬银, 张嫚, 韩锡正, 赵利娜. Fei氏方波对Ni-P合金镀层组成及其非晶化程度的调控作用[J]. 材料工程, 2020, 48(6): 163-169.
[9] 李文亚, 曹聪聪, 杨夏炜, 徐雅欣. 冷喷涂复合加工制造技术及其应用[J]. 材料工程, 2019, 47(11): 53-63.
[10] 贺星, 孔德军, 宋仁国. 激光熔覆Al-Ni-TiC-CeO2复合涂层的组织与耐腐蚀磨损性能[J]. 材料工程, 2019, 47(10): 68-75.
[11] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[12] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[13] 彭竹琴, 李俊魁, 卢金斌, 马明星, 吴玉萍. 稀土CeO2对AlCoCuFeMnNi高熵合金组织与性能的影响[J]. 材料工程, 2018, 46(8): 91-97.
[14] 崔永静, 郝晶莹, 王长亮, 宇波, 汤智慧. 树脂基复合材料表面爆炸喷涂铝涂层性能研究[J]. 材料工程, 2018, 46(6): 120-124.
[15] 刘秀波, 周仲炎, 翟永杰, 乔世杰, 徐江宁, 罗迎社, 涂溶. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn