Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (9): 122-130    DOI: 10.11868/j.issn.1001-4381.2016.000101
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
铬对高钒耐磨合金凝固组织和耐磨性能的影响
杨勇维1, 符寒光1, 鞠江1, 王开明1, 雷永平1, 朱礼龙2, 江亮2
1. 北京工业大学 材料科学与工程学院, 北京 100124;
2. 中南大学 粉末冶金研究院, 长沙 410083
Effect of Chromium on Solidification Microstructure and Wear Property of High Vanadium Wear-resistant Alloy
YANG Yong-wei1, FU Han-guang1, JU Jiang1, WANG Kai-ming1, LEI Yong-ping1, ZHU Li-long2, JIANG Liang2
1. College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China;
2. Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
全文: PDF(4674 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用Thermo-Calc热力学软件计算Fe-C伪二元系在不同铬含量(Fe-3.0% C-10.0% V-0.8% Si-0.8% Mn-X% Cr,X分别为2.0,5.0,10.0,质量分数,下同)下的垂直截面图和凝固过程中各相转变过程图。利用OM,SEM,EDS,XRD,DSC和耐磨实验等实验手段,研究铬对相图和凝固组织的影响规律。结果表明:随着铬含量的增加,相图共晶点和相区大小变化不明显。合金凝固过程中各相的转变测试温度与计算结果相接近。合金的凝固组织为α-Fe,MC和M7C3等相,铬主要分布在α-Fe和M7C3型碳化物中。随着铬含量的增大,MC的数量逐渐减少,M7C3数量逐渐增加,α-Fe数量基本不变。硬度随着铬的增加而显著增大,铬含量为10.0%时达到最高值67.0HRC。铬含量为5.0%时,其磨损失重最低,约为15.6mg,耐磨性最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨勇维
符寒光
鞠江
王开明
雷永平
朱礼龙
江亮
关键词 高钒耐磨合金铸态组织相图计算凝固耐磨性    
Abstract:The equilibrium solidified and the vertical section phase diagrams of Fe-C pseudo-binary were drawn with different chromium content (Fe-3.0%C-10.0%V-0.8%Si-0.8%Mn-X%Cr, X=2.0,5.0,10.0, mass fraction) by the Thermo-Calc software. The effect of chromium on the phase diagrams and solidification microstructure was investigated by OM, SEM, EDS, XRD, DSC and wear resistance test. The results show that the changes of eutectic transition points and phase region area are tiny with the increase of chromium content. The calculated temperatures of precipitated phase are close to the DSC results. The solidification microstructure is composed with α-Fe, MC, and M7C3. Chromium is mainly distributed in α-Fe and M7C3 carbides. With the increase of chromium, the amount of MC decreases and the amount of M7C3 increases; the α-Fe has no change. The hardness of the cast alloy increases with the increase of chromium content, and the maximum value reaches to 67.0HRC when chromium content is 10.0%. The wear loss is about 15.6mg when the chromium content is 5.0%, the wear resistance is the best.
Key wordshigh vanadium wear-resistant alloy    cast microstructure    phase diagram calculation    solidification    wear resistance
收稿日期: 2016-01-22      出版日期: 2018-09-19
中图分类号:  TG142.4  
通讯作者: 符寒光(1964-),男,博士,研究员,博导,主要从事新型金属材料开发与应用研究,联系地址:北京市朝阳区平乐园100号北京工业大学材料学院(100124),E-mail:hgfu@bjut.edu.cn     E-mail: hgfu@bjut.edu.cn
引用本文:   
杨勇维, 符寒光, 鞠江, 王开明, 雷永平, 朱礼龙, 江亮. 铬对高钒耐磨合金凝固组织和耐磨性能的影响[J]. 材料工程, 2018, 46(9): 122-130.
YANG Yong-wei, FU Han-guang, JU Jiang, WANG Kai-ming, LEI Yong-ping, ZHU Li-long, JIANG Liang. Effect of Chromium on Solidification Microstructure and Wear Property of High Vanadium Wear-resistant Alloy. Journal of Materials Engineering, 2018, 46(9): 122-130.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000101      或      http://jme.biam.ac.cn/CN/Y2018/V46/I9/122
[1] 王强,杨涤心,魏世忠,等.高碳高钒系高速钢耐磨材料的现状与发展[J].铸造技术,2004,25(11):876-879. WANG Q, YANG D X, WEI S Z, et al. Investigation of the high carbon high vanadium high speed steel wear-resistance[J]. Foundry Technology, 2004, 25(11):876-879.
[2] 刘亚民,陈振华,郭国庆,等.钒含量对高碳高钒高速钢组织与性能的影响[J].洛阳工学院学报,2002,23(2):8-11. LIU Y M, CHEN Z H, GUO G Q, et al. Effect of vanadium content on the microstructures and properties of high speed steels containing high carbon and vanadium[J]. Journal of Luoyang Institute of Technology, 2002, 23(2):8-11.
[3] MARIN M, DRUGESCU E, POTECASU F, et al. Mechanical properties and abrasive wear behavior of steam treated sintered iron alloys[J]. Metalurgia, 2011, 63(6):15-22.
[4] KAWALEC M. Microstructure of hypereutectic Fe-C-V alloys[J]. Archives of Foundry Engineering, 2011, 11(2):55-60.
[5] 魏世忠,徐流杰,朱金华,等.碳、钒含量对高钒高速钢组织和力学性能的影响[J].钢铁研究学报,2005,17(5):66-71. WEI S Z, XU L J, ZHU J H, et al. Effect of carbon and vanadium content on microstructure and mechanical properties of high vanadium high speed steel[J]. Journal of Iron and Steel Research, 2005, 17(5):66-71.
[6] 魏世忠,倪锋,朱金华,等.高钒铁碳合金的凝固过程[J].钢铁研究学报,2005,17(3):56-59. WEI S Z, NI F, ZHU J H, et al. Solidification process of Fe-C alloy containing rich vanadium[J]. Journal of Iron and Steel Research, 2005, 17(3):56-59.
[7] GOTO K, MATSUDA Y, SAKAMOTO K, et al. Basic characteristics and microstructure of high carbon high speed steel rolls for hot rolling mill[J]. ISIJ International, 1992, 32(11):1184-1189.
[8] 张志刚,牛炎,张学军.铁-铬-铝合金中铬的第三组元作用[J].钢铁研究学报,2007,19(7):46-49. ZHANG Z G, NIU Y, ZHANG X J. Effect of third element Cr in Fe-Cr-Al alloys[J]. Journal of Iron and Steel Research, 2007, 19(7):46-49.
[9] 周宏,王金国,贾树盛,等.轧辊用高碳高速钢系合金的KIC及力学性能[J].钢铁,1997,32(8):59-62. ZHOU H, WANG J G, JIA S S, et al. Study on mechanical properties of high-carbon high speed steel for roll[J]. Iron and Steel, 1997, 32(8):59-62.
[10] FILIPOVIC M, KAMBEROVIC Z, KORAC M. Effect of niobium and vanadium additions on the as-cast microstructure and properties of hypoeutectic Fe-Cr-C alloy[J].ISIJ International, 2013, 53(12):2160-2166.
[11] 向道平,唐建新.Cr/C比及热处理工艺对高铬铸铁抗磨粒磨损性能的影响[J].热加工工艺,2004(5):21-23. XIANG D P, TANG J X. Influence of Cr/C ratio and heat treatment process on abrasive wear resistance of high chromium[J]. Hot Working Technology, 2004(5):21-23.
[12] JESSON D A, MOHEBBI H, FARROW J, et al. On the condition assessment of cast iron trunk main:the effect of microstructure and in-service graphitisation on mechanical properties in flexure[J]. Materials Science and Engineering:A, 2013, 576:192-201.
[13] SPANGEL S, MATTHAEI-SCHULZ E, SCHULZ A, et al. Influence of carbon and chromium content and preform shape on the microstructure of spray formed steel deposits[J]. Materials Science and Engineering:A, 2002, 326(1):26-39.
[14] SUNDMAN B, JANSSON B, ANDERSSON J O. The Thermo-Calc databank system[J]. Calphad,1985,9(2):153-190.
[15] YANG Y W, FU H G, LEI Y P, et al. Phase diagram calculation and analyze on cast high-boron high-speed steel[J]. Journal of Materials Engineering and Performance, 2016, 25(2):409-420.
[16] YAMASHITA T, OKUDA K, OBARA T. Application of Thermo-Calc to the development of high-performance steels[J]. Phase Equilibria, 1999, 20(3):231-237.
[17] KAUFMAN L, TURCHI P E A, HUANG W M, et al. Thermodynamics of the Cr-Ta-W system by combining the Ab initio and CALPHAD methods[J]. Calphad,2001,25(3):419-433.
[18] 苏航,杨才福,柴峰,等.热力学、动力学计算技术在钢铁材料研究中的应用[M].北京:科学出版社,2012:2-49. SU H, YANG C F, CHAI F, et al. The application of thermodynamics and kinetics calculation technology in the iron and steel research[M].Beijing:Science Press, 2012:2-49.
[19] ANDERSSON J O, HELANDER T, HOGLUND L, et al. Thermo-Calc & DICTRA, computational tools for materials science[J]. Calphad,2002,26(2):273-312.
[20] SHIMIZU M, SHITAMURE O, MATSUO S, et al. Development of high performance new composite roll[J]. ISIJ International, 1992, 32(11):1244-1249.
[21] 王金国,周宏,苏源德,等.高碳高钒高速钢的高温硬度及热处理的研究[J].金属热处理,2000(3):22-24. WANG J G, ZHOU H, SU Y D, et al. Research on heat treatment and hot hardness of high speed steel containing high carbon and high vanadium[J]. Heat Treatment of Metals, 2000(3):22-24.
[22] 符寒光,邢建东.高速钢轧辊制造技术[M].北京:冶金工业出版社,2007:73-81. FU H G, XING J D. Roller manufacture of high speed steel[M]. Beijing:Metallurgical Industry Press, 2007:73-81.
[23] 陈平,项欣,李俊玲,等.沟槽型织构摩擦学性能的数值模拟与实验研究[J].材料工程,2016,44(6):31-37. CHEN P, XIANG X, LI J L, et al. Experimental and numerical investigation on tribological performance of grooved texture[J]. Journal of Materials Engineering, 2016, 44(6):31-37.
[24] XU L J, WEI S Z, XING J D, et al. Effects of carbon content and sliding ratio on wear behavior of high-vanadium high-speed steel (HVHSS) under high-stress rolling-sliding contact[J]. Tribology International, 2014, 70:34-41.
[1] 黄敏, 张功, 王栋, 李辉, 董加胜, 楼琅洪. 复杂镍基单晶铸件显微孔洞的形成机理[J]. 材料工程, 2020, 48(2): 123-132.
[2] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[3] 刘承林, 苏海军, 张军, 刘林, 傅恒志. 静磁场对定向凝固镍基高温合金组织影响的研究进展[J]. 材料工程, 2019, 47(9): 13-20.
[4] 柯鹏, 蔡飞, 胡凯, 张世宏, 王硕煜, 朱广宏, 倪振航, 胡小红. 黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响[J]. 材料工程, 2019, 47(7): 144-150.
[5] 贾东瑞, 王越, 刘正, 毛萍莉, 王峰, 王志. Y含量对MgZn9YxZr0.5合金热裂敏感性的影响[J]. 材料工程, 2019, 47(7): 126-133.
[6] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[7] 罗忠兵, 张嘉宁, 金士杰, 林莉. 定向凝固镍基合金DZ444声学特性的各向异性[J]. 材料工程, 2019, 47(4): 120-126.
[8] 黄高仁, 孙乙萌, 张利, 刘玉林. Mg含量对亚快速凝固Al-Zn-Mg-Cu-Zr合金组织与性能的影响[J]. 材料工程, 2018, 46(9): 109-114.
[9] 黄高仁, 孙乙萌, 张利, 刘玉林. 微量Ce对亚快速凝固Al-Zn-Mg-Cu合金组织与性能的影响[J]. 材料工程, 2018, 46(3): 105-111.
[10] 鲍颖, 骆琳, 俞泽民, 杨冬野, 刘娜, 张国庆, 孙剑飞. 氩气雾化Ti-48Al合金液滴的快速冷却和凝固组织[J]. 材料工程, 2018, 46(12): 117-123.
[11] 唐仕光, 陈泉志, 蒋智秋, 童庆, 董婉冰, 李伟洲. 激光重熔处理对铝合金微弧氧化膜组织与性能的影响[J]. 材料工程, 2018, 46(12): 157-164.
[12] 卢玉章, 熊英, 彭建强, 申健, 郑伟, 张功, 谢光. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程, 2018, 46(1): 8-15.
[13] 马世榜, 夏振伟, 徐杨, 施焕儒, 王旭, 郑越. 激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性[J]. 材料工程, 2017, 45(6): 24-30.
[14] 何银花, 王发展. 对流扩散-多相相变体系内柱状晶/等轴晶形成过程的数值模拟[J]. 材料工程, 2017, 45(6): 104-111.
[15] 田兵, 龚建勋, 刘江晴, 吴慧剑. Si对明弧堆焊合金M7C3相及耐磨性的影响[J]. 材料工程, 2017, 45(4): 34-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn